Advertisement

Journal of Applied Electrochemistry

, Volume 9, Issue 6, pp 765–775 | Cite as

The role of electrode structure and surface texture in the performance of gas evolving electrodes

  • A. T. Kuhn
  • J. Bin Yusof
  • P. Hogan
Papers

Abstract

The literature on gas-evolving electrodes is reviewed. Cell voltage measurements are reported for an undivided cell in NaOH at 70° C in which the cathode was mild steel plate, mild steel mesh or composites of both these materials. The anode was Ni-plated mild steel sheet or mesh. Variation in the structure of one electrode, leaving the other unchanged allowed changes in overvoltage to be measured. It is shown that substantial voltage reductions can be obtained using multiplex electrode structures and that these are mainly explicable in terms of specific surface areas. Sheet electrodes are seen to be more efficient than mesh ones on this basis however. It is shown that sheet electrodes with very high specific surface areas show significantly higher overvoltages than electrodes of low specific area and this surprising result is interpreted in terms of bubble entrapment.

Keywords

Mild Steel Steel Sheet High Specific Surface Area Cell Voltage Voltage Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. T. Kuhn,Chem. Processing July (1974) 9.Google Scholar
  2. [2]
    Idem., ibid. August (1974) 5.Google Scholar
  3. [3]
    I. Rousar, V. Cezner, J. Nejepsova, M. M. Jacksić, M. Spasojević and B. Z. Nikolić,J. Appl. Electrochem. 7 (1977) 427.Google Scholar
  4. [4]
    F. Hine,J. Electrochem. Soc. 122 (1975) 1185.Google Scholar
  5. [5]
    M. Hayes, A. T. Kuhn and W. Paterfield,J. Power Sources 2 (1977) 121.Google Scholar
  6. [6]
    F. Hine,ECS Meeting Seattle (1978) Abstract 459.Google Scholar
  7. [7]
    Z. Nagy,J. Appl. Electrochem. 6 (1976) 171.Google Scholar
  8. [8]
    A. T. Kuhn,Chem. Ind. 4 July (1978) 447.Google Scholar
  9. [9]
    French Patent 1530 541 (to Hooker Corp).Google Scholar
  10. [10]
    US Patent 3871 988 (to Hooker Corp).Google Scholar
  11. [11]
    German Offen Patent 2430 384 (to Hooker Corp).Google Scholar
  12. [12]
    German Offen Patent 2353 583 (to Solvay).Google Scholar
  13. [13]
    German Offen Patent 2704 213.Google Scholar
  14. [14]
    Swiss Patent 480 870.Google Scholar
  15. [15]
    German Offen Patent 2618410.Google Scholar
  16. [16]
    German Offen Patent 2455 222.Google Scholar
  17. [17]
    German Offen Patent 2454 827.Google Scholar
  18. [18]
    German Offen Patent 2704 213.Google Scholar
  19. [19]
    Canadian Patent 910 847.Google Scholar
  20. [20]
    British Patent 1313 441.Google Scholar
  21. [21]
    J. Mueller,Chem. Ing. Tech. 49 (1977) 326.Google Scholar
  22. [22]
    V. E. Sosenkhin,Soviet Electrochem. 14 (1978) 976.Google Scholar
  23. [23]
    A. A. Chernenko and G. Y. Chirkov,ibid 14 (1978) 1202.Google Scholar
  24. [24]
    Idem, ibid 14 (1978) 358.Google Scholar
  25. [25]
    Idem, ibid 14 (1978) 1451.Google Scholar
  26. [26]
    German Offen Patent 2430 384 (to Hooker Corp).Google Scholar
  27. [27]
    US Patent 3974 058 (to BASF).Google Scholar
  28. [28]
    German Patent 1207 358,Google Scholar
  29. [29]
    W. Vielstich,Chem. Ing. Tech. 33 (1961) 75.Google Scholar
  30. [30]
    German Offen Patent 2527 386 (to Hooker Corp).Google Scholar
  31. [31]
    Belgian Patent 846 161.Google Scholar
  32. [32]
    German Offen Patent 2640 225.Google Scholar
  33. [33]
    German Offen Patent 2706 577.Google Scholar
  34. [34]
    US Patent 3974 058.Google Scholar
  35. [35]
    US Patent 4010 085.Google Scholar
  36. [36]
    German Offen Patent 2638 995.Google Scholar
  37. [37]
    German Patent 1207 358.Google Scholar
  38. [38]
    W. Gnot,Przemysl Chem. 48 (1969) 670.Google Scholar
  39. [39]
    R. L. LeRoy,ECS Meeting Seattle (1978) Ext Abstract 477.Google Scholar
  40. [40]
    G. N. Trusov,Soviet Electrochem. 12 (1976) 1661.Google Scholar
  41. [41]
    H. Hagi,Nippon Kinzoku Gakaishi 40 (80) (1976) 796.Google Scholar
  42. [42]
    F. R. Smith,J. Electroanalyt. Interfac. Chem. 43 (1973) 45.Google Scholar
  43. [43]
    S. Srinivasan,ECS Spring Meeting, Philadelphia USA (1977) Abstract 350.Google Scholar
  44. [44]
    ‘Industrial Electrochemical Processes’ Elsevier Amsterdam (1971) Ch. 4.Google Scholar
  45. [45]
    Ibid Ch. 9 (by G. Isserlis).Google Scholar
  46. [46]
    M. Fouad and G. Sedhamed,Electrochim. Acta 20 (1976) 615.Google Scholar
  47. [47]
    German Patent 1264 420.Google Scholar
  48. [48]
    Y. Hashimoto,Denki Kagaku 36 (1968) 889.Google Scholar
  49. [49]
    A. P. Koryushkin,Soviet Electrochem. 13 (1977) 1095.Google Scholar
  50. [50]
    A. N. Barabotkin,ibid 11 (1975) 800.Google Scholar
  51. [51]
    G. I. Kharitonov,ibid 11 (1975) 1857.Google Scholar
  52. [52]
    Z. Glembotski,Elekton. Obrab. Mater. (5) (1973) 66.Google Scholar
  53. [53]
    B. Matov,ibid (3) (1969) 44.Google Scholar
  54. [54]
    F. R. Smith,J. Indian Chem. Soc. 52 (1975) 1220.Google Scholar
  55. [55]
    Idem J. Electrochem. Soc. (1975) 104C 122, Abstract 347.Google Scholar
  56. [56]
    J. Thonstad and F. Ngoya, paper presented at29th ISE Meeting Budapest (1978).Google Scholar
  57. [57]
    T. Kituno,Nippon Kakagu Kaishi (1973) 1118.Google Scholar
  58. [58]
    A. C. C. Tseung and P. R. Vassie,Electrochim. Acta 20 (1975) 763 and21 (1976) 315.Google Scholar
  59. [59]
    N. Ibl,Metalloberflaeche 24 (1970) 365.Google Scholar

Copyright information

© Chapman and Hall Ltd 1979

Authors and Affiliations

  • A. T. Kuhn
    • 1
  • J. Bin Yusof
    • 1
  • P. Hogan
    • 1
  1. 1.Department of ChemistryUniversity of SalfordSalfordUK

Personalised recommendations