Skip to main content
Log in

Oxidation of molten Al-Mg alloy in air, air-SO2, and air-H2S atmospheres

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Rates of oxidation of 8 g samples of molten Al-Mg alloys in air, air-SO2, and air-H2S atmospheres were determined at 750°C by gravimetry. Weight gains in air containing 10 or more volume percent SO2 averaged 0.2 % in up to 100 hr, whereas samples heated in air alone gained over 5% weight in 20 hr and 10% in 70 hr. Heating for only 1 hr in SO2 concentrations of 10% or greater prevented extensive oxidation during additional heating in air alone. H2S was more effective than SO2 heating for as little as 1/2hr in 0.25 vol. % H2S prevented extensive oxidation during subsequent heating for at least 90 hr in air alone. The inhibiting effect of either SO2 or H2S probably involves oxidation to SO3. This reacts with portions of the initial protective amorphous MgO film to form MgSO4, which has a high volume quotient and maintains protection as nonprotective crystalline MgO forms at the end of an induction period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. L. Bircumshaw and G. D. Preston,Phil. Mag. 21, 686 (1936).

    Google Scholar 

  2. S. Dobinski,Phil. Mag. 23, 397 (1937).

    Google Scholar 

  3. G. Gauthier,Found. Trade J. 59, 373 (1938).

    Google Scholar 

  4. O. Kubaschewski and H. Ebert,Z. Metallk. 38, 232 (1947).

    Google Scholar 

  5. J. Calvet and V. Potemkine,Rech. Aeron. 29, 21 (1952).

    Google Scholar 

  6. M. Whitaker and A. R. Heath,J. Inst. Metals 82, 107 (1953–54).

    Google Scholar 

  7. E. A. Smith, Jr.,Light Metal Age 12, 24 (1954).

    Google Scholar 

  8. W. W. Smeltzer,J. Electrochem. Soc. 105, 67 (1958).

    Google Scholar 

  9. S. Balicki,Prace Inst. Hutniczych 10, 208 (1958).

    Google Scholar 

  10. S. Balicki and J. Leitl,Prace Inst. Hutniczych 11, 71 (1959).

    Google Scholar 

  11. R. A. Hine and R. D. Guminski,J. Inst. Metals 89, 417 (1960–61).

    Google Scholar 

  12. C. N. Cochran and W. C. Sleppy,J. Electrochem. Soc. 108, 322 (1961).

    Google Scholar 

  13. W. Thiele,Aluminium 38, 780 (1962).

    Google Scholar 

  14. E. F. Emley,Principles of Magnesium Technology, 1st ed., Pergamon Press, New York (1966).

    Google Scholar 

  15. J. W. Fruehling and J. D. Hanawalt,Modern Casting 56(2), 159 (1969).

    Google Scholar 

  16. L. de Brouckere,J. Inst. Metals 71, 131 (1945).

    Google Scholar 

  17. M. V. Mal'tsev, Yu D. Dhistyakov, and M. I. Tsypin,Bull. Acad. Sci. USSR 747 (1956).

  18. C. N. Cochran, unpublished work (Aluminum Company of America).

  19. N. B. Pilling and R. E. Bedworth,J. Inst. Metals 29, 529 (1923).

    Google Scholar 

  20. Free Energy Data fromJANAF Thermochemical Tables, Dow Chemical Co., Midland, Michigan.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belitskus, D.L. Oxidation of molten Al-Mg alloy in air, air-SO2, and air-H2S atmospheres. Oxid Met 3, 313–317 (1971). https://doi.org/10.1007/BF00614625

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00614625

Keywords

Navigation