Journal of Applied Electrochemistry

, Volume 15, Issue 6, pp 879–886 | Cite as

Recovery and recrystallization of electrodeposited bright copper coatings at room temperature. I. Microhardness in relation to coating structure

  • D. S. Stoychev
  • I. V. Tomov
  • I. B. Vitanova


The electrolyte composition effect on the microhardness of bright copper coatings electrodeposited from sulphuric acid electrolytes was established. It is shown that the sulphuric acid content and the type of brightener agent strongly influence the rate of decrease of microhardness of deposited coatings with time. The systematic quantitative and qualitative investigations performedin situ determined the microhardness changes on the one hand, and the change in microdeformations, dislocation defects, crystallites size and texture of copper coatings on the other hand, thus demonstrating unambiguously the correlation betweeen them. The decrease in copper coating microhardness is explained by the occurrence of recovery and recrystallization processes at room temperature.


Copper Physical Chemistry Recrystallization Acid Content Crystallite Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Sieverts and W. Wippelmann,Z. anorg. Chem. 91 (1915) 1.Google Scholar
  2. [2]
    A. Butts and V. De Nora,Trans. Electrochem. Soc. 79 (1941) 22.Google Scholar
  3. [3]
    N. P. Fedotiev and P. M. Viatcheslavov,Trudi LTI im. Lensoveta,53 (1959) 9.Google Scholar
  4. [4]
    N. P. Fedotiev, P. M. Viatchelslavov, V. I. Gribel and E. M. Zaleskaya,J. Appl. Chem. (USSR)37 (1964) 691.Google Scholar
  5. [5]
    K. Schmidt and K. I. Tihonov,J. Appl. Chem. (USSR)44 (1971) 1896.Google Scholar
  6. [6]
    V. M. Kozlov,Fiz. Metal, i. Metalov. 45 (1978) 1322.Google Scholar
  7. [7]
    E. A. Mamontov, L. A. Kurbatova, J. N. Ojogina and T. A. Stepanova,Electrochimia 17 (1981) 1804.Google Scholar
  8. [8]
    J. D. Gamburg, L. I. Lihosherstova, V. V. Trofimenko and L. I. Malikova,ibid. 17 (1981) 1491.Google Scholar
  9. [9]
    J. M. Polukarov and V. A. Kuznetsov,J. Phys. Chem. (USSR)36 (1962) 2382.Google Scholar
  10. [10]
    V. I. Gribel, N. P. Fedotev and P. M. ViatchelslavovElectrochimia 1 (1965) 364.Google Scholar
  11. [11]
    G. Michael,Metalloberfläche 32 (1978) 430.Google Scholar
  12. [12]
    D. S. Stoychev, I. B. Vitanova, I. G. Pozarliev and S. Rashkov,Polygraphia (USSR)9 (1984) 39.Google Scholar
  13. [13]
    W. H. Hall,Proc. Phys. Soc. A62 (1949) 741.Google Scholar
  14. [14]
    J. B. Cohen and J. Wagner,Appl. Phys. 33 (1962) 2073.Google Scholar
  15. [15]
    G. Wiliamson and R. Smallman,Phil. Mag. 1 (1956) 34.Google Scholar
  16. [16]
    D. S. Stoychev, I. B. Vitanova, S. Rashkov and T. D. Vitanov,Surf. Tech. 7 (1978) 427.Google Scholar
  17. [17]
    D. S. Stoychev, I. B. Vitanova, T. D. Vitanov and S. Rashkov,Compt. rend. Acad. bulg. Sci. 32 (1979) 1515.Google Scholar
  18. [18]
    Ju. D. Gamburg, Dr thesis, NIFHI im. Karpova, Moscow (1981).Google Scholar
  19. [19]
    A. Milchev and E. Vasileva,Compt. rend. Acad. bulg. Sci. 9 (1976) 496.Google Scholar
  20. [20]
    L. Reimer, J. Ficket and T. Pieper,Z. Metallkde. 52 (1961) 753.Google Scholar
  21. [21]
    J. E. Wilson and L. Tomassen,Trans. Amer. Soc. Met. 22 (1934) 769.Google Scholar
  22. [22]
    I. Tomov, D. S. Stoychev and I. Vitanova,J. Appl. Electrochem. 15 (1985) 887.Google Scholar

Copyright information

© Chapman and Hall Ltd 1985

Authors and Affiliations

  • D. S. Stoychev
    • 1
  • I. V. Tomov
    • 1
  • I. B. Vitanova
    • 1
  1. 1.Institute of Physical ChemistryBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations