Skip to main content
Log in

Reactor engineering models of complex electrochemical reaction schemes. III. Galvanostatic operation of parallel reactions in batch reactors

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Batch electrochemical reactor models for parallel reaction sequences are developed for cells operating galvanostatically. Independent and dependent parallel reactions and a parallel-series reaction scheme are considered and emphasis is placed on the development of analytical expressions to predict reactor behaviour. Electro-organic synthesis reactions such as the production of betaalanine and glyoxylic acid are considered as examples. Experimental data for the electro-oxidation of aqueous oxalic acid and glyoxylic acid solutions are shown to be in reasonable agreement with the reaction analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

a :

Parameter defined in Equation 21

C sj :

Surface concentration of species j

C j :

Bulk concentration of species j

C jo :

Initial concentration of species j

C Bmax :

Maximum concentration of species B

CE :

Current efficiency

E :

Electrode potential

F :

Faraday constant

i p :

Partial current density of step p of reaction scheme

i t :

Total current density

k fp :

Forward electrochemical rate constant of step p

k Lj :

Mass transfer coefficient for species j

K L :

Dimensionless mass transfer parameter

n p :

Number of electrons in step p of reaction scheme

S :

Electrode area

t :

Reaction time

V :

Batch reactor volume

β p :

Constant describing potential dependency of reaction rate constant of reaction step p

Y 1,Y 2,Y 3 :

Effective overall resistance factors

τg :

Dimensionless reaction time for galvanostatic operation

τp :

Dimensionless reaction time for potentiostatic operation

References

  1. M. Fleischmann and R. E. W. Jansson,J. Appl. Electrochem. 9 (1979) 427.

    Google Scholar 

  2. O. Levenspiel ‘Chemical Reaction Engineering’ 2nd Ed, J. Wiley, New York (1972).

    Google Scholar 

  3. F. Goodridge and A. R. Wright in ‘Comprehensive Treatise of Electrochemistry’ Vol. 6 (edited by E. Yeager, J. O. M. Bockris, B. E. Conway and S. Sarangapani) Plenum Press, New York (1983).

    Google Scholar 

  4. G. P. Sakellaropoulos and G. A. Francis,J. Electrochem. Soc. 126 (1979) 1928.

    Google Scholar 

  5. G. P. Sakellaropoulos,AIChEJ 25 (1979) 781.

    Google Scholar 

  6. G. P. Sakellaropoulos and G. A. Francis,J. Chem. Tech. Biotechnol. 30 (1980) 102.

    Google Scholar 

  7. K. Scott,Electrochim. Acta 30 (1985) 235.

    Google Scholar 

  8. Idem, ibid. 30 (1985) 245.

    Google Scholar 

  9. V. Krishnan, K. Ragupathy and H. V. K. Udupa,J. Appl. Electrochem. 8 (1978) 169.

    Google Scholar 

  10. K. Scott, submitted toChem. Eng. Res. Design.

  11. K. Scott, PhD Thesis University of Newcatle-upon-Tyne, UK (1977).

    Google Scholar 

  12. D. J. Pickett and K. S. Yap,J. Appl. Electrochem. 4 (1974) 17.

    Google Scholar 

  13. F. Goodridge, K. Lister, R. E. Plimley and K. Scott,J. Appl. Electrochem. 10 (1980) 55.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scott, K. Reactor engineering models of complex electrochemical reaction schemes. III. Galvanostatic operation of parallel reactions in batch reactors. J Appl Electrochem 15, 837–858 (1985). https://doi.org/10.1007/BF00614360

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00614360

Keywords

Navigation