Journal of comparative physiology

, Volume 121, Issue 1, pp 65–77 | Cite as

Visual interneurons in the median protocerebrum of the bee

  • J. Erber
  • R. Menzel


Visual interneurons in the median protocerebrum were electrophysiologically analysed. Over half of the units responded to more than one modality (light, scent, sugar water). As the intensity dependencies for these interneurons are rather complicated, their visual properties were characterized by measuring response/intensity functions (R/I-curves). No significant response differences were found for the different recording locations in the mushroom body region. The only apparent difference was that the interneurons' spontaneous discharge frequencies differed with recording site.

The visual interneurons revealed different classes of R/I-dependencies:
  1. 1.

    R/I curves with positive slope and a wide response range;

  2. 2.

    R/I curves with intensity specific response bands (I-bands);

  3. 3.

    R/I curves with inhibition;

  4. 4.

    R/I curves with little intensity dependence;

  5. 5.

    R/I curves with colour specific response bands.


The spectral sensitivities of most units were broad. In all but one case narrow banded spectral sensitivities had a UV maximum. In many units the spectral sensitivities for the three temporal components of the response (on, sustained and off) are different. The integration of these neurons in the process of colour coding is discussed.


Body Region Spectral Sensitivity Positive Slope Colour Code Recording Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Autrum, H., Zwehl, V.v.: Die spektrale Empfindlichkeit einzelner Sehzellen des Bienenauges. Z. vergl. Physiol.48, 357–384 (1964)Google Scholar
  2. Daumer, K.: Reizmetrische Untersuchung des Farbensehens der Biene. Z. vergl. Physiol.38, 413–478 (1956)Google Scholar
  3. DeValois, R.L.: Central mechanisms of colour vision. In: Handb. sens. physiol., Vol. VII/3A: Central processing of visual information (ed. R. Jung), pp. 209–254. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  4. Erber, J.: The dynamics of learning in the honey bee I. The time dependence of the choice reaction. J. comp. Physiol.99, 231–242 (1975)Google Scholar
  5. Erber, J.: The dynamics of learning in the honey bee II. Principles of information processing. J. comp. Physiol.99, 243–255 (1975)Google Scholar
  6. Frisch, K. von: Demonstration von Versuchen zum Nachweis des Farbensinnes angeblich total farbenblinder Tiere. Verh. dtsch. Zool. Ges., Freiburg (1914)Google Scholar
  7. Helversen, O. von: Zur spektralen Unterschiedsempfmdlichkeit der Honigbiene. J. comp. Physiol.80, 439–472 (1973)Google Scholar
  8. Kenyon, F.C.: The brain of the bee. A preliminary contribution to the morphology of the nervous system of the Arthropoda. J. comp. Neurol.6, 133–210 (1898)Google Scholar
  9. Kien, J., Menzel, R.: Chromatic properties of interneurons in the optic lobes of the bee. I. Broad band neurons. J. comp. Physiol.113, 17–34 (1977)Google Scholar
  10. Kien, J., Menzel, R.: Chromatic properties of interneurons in the optic lobes of the bee. II. Narrow band and colour opponent neurons. J. comp. Physiol.113, 35–53 (1977)Google Scholar
  11. Masuhr, Th.: Lokalisation und Funktion des Kurzzeitgedächtnisses der HonigbieneApis mellifica L. Dissertation TH Darmstadt (1976)Google Scholar
  12. Menzel, R.: Untersuchungen zum Erlernen von Spektralfarben durch die Honigbiene. Z. vergl. Physiol.56, 22–62 (1967)Google Scholar
  13. Menzel, R.: Spectral sensitivity and colour vision in invertebrates. In: Handb. sens. physiol. VII/6 B (ed. H. Autrum). Berlin-Heidelberg-New York: Springer (in preparation)Google Scholar
  14. Menzel, R., Blakers, M.: Functional organization of an insect ommatidium with fused rhabdom. Cytobiol.11, 279–298 (1976)Google Scholar
  15. Menzel, R., Erber, J., Masuhr, Th.: Learning and memory in the honey bee. In: Experimental analysis of insect behaviour (ed. L. Burton-Brown). Berlin-Heidelberg-New York: Springer 1974Google Scholar
  16. Schümperli, R.A.: Monocular and binocular visual fields of butterfly interneurons in response to white- and coloured light stimulation. J. comp. Physiol.103, 273–289 (1975)Google Scholar
  17. Schürmann, F.W.: Synaptic contacts of association fibres in the brain of the bee. Brain Res.26, 169–176 (1971)Google Scholar
  18. Schürmann, F.W.: Bemerkungen zur Funktion der Corpora pedunculata im Gehirn der Insekten aus morphologischer Sicht. Exp. Brain Res.19, 406–432 (1974)Google Scholar
  19. Strausfeld, N.J.: Atlas of an insect brain. Berlin-Heidelberg-New York: Springer 1975Google Scholar
  20. Suzuki, H., Tateda, H.: An electrophysiological study of olfactory interneurons in the brain of the honey bee. J. Insect Physiol.20, 2287–2299 (1974)Google Scholar
  21. Suzuki, H., Tateda, H., Kuwabara, M.: Activities of antennal and ocellar interneurons in the protocerebrum of the honey bee. J. exp. Biol.64, 405–418 (1976)Google Scholar
  22. Swihart, St.L.: The neural basis of colour vision in the butterfly,Papilio troilus. J. Insect Physiol.16, 1623–1636 (1970)Google Scholar
  23. Swihart, St.L.: Modelling the butterfly visual pathway. J. Insect Physiol.18, 1915–1918 (1972)Google Scholar
  24. Weiss, M.J.: Neuronal connections and the function of the corpora pedunculata in the brain of the American cockroach,Periplaneta americana L. J. Morph.142, 21–69 (1974)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • J. Erber
    • 1
  • R. Menzel
    • 1
  1. 1.Institut für Tierphysiologie, Arbeitsgruppe NeurobiologieFreie Universität BerlinBerlin 41

Personalised recommendations