Advertisement

Journal of comparative physiology

, Volume 121, Issue 1, pp 33–51 | Cite as

Visually mediated snapping in the bulldog ant: A perceptual ambiguity between size and distance

  • Sara E. Via
Article

Summary

  1. 1.

    The isolated head of the bulldog ant,Myrmecia gulosa, snaps its mandibles in a predictable way in response to an approaching target, allowing the isolation of a single visually mediated component from the complex prey capture repertoire of intact animals.

     
  2. 2.

    The timing of the response depends on both the size of the target and its position relative to the animal's visual midline (Figs. 2, 12, 13). Except for a latency component, the snapping is velocity independent (Fig. 3).

     
  3. 3.

    Only 14% of the animals tested continued to respond to the targets when vision in one eye was occluded. Although monocular responses occurred at the same mean target distance as binocular responses, the variance was significantly greater (Figs. 4, 5).

     
  4. 4.

    Optical measurements of the visual field ofM.gulosa indicate a binocular overlap of nearly 60° (Figs. 7, 9).

     
  5. 5.

    Correlation of behavioral and optical measurements suggest that the snapping is triggered when the edge of any size target comes into the visual field of a small group of facets (Figs. 9, 10).

     
  6. 6.

    These experiments with the isolated head preparation show that the bulldog ant cannot judge the absolute distance of a target in the visual field when limited to primary visual cues, and suggest that two eyes are better than one simply because they provide more input.

     

Keywords

Small Group Visual Field Optical Measurement Intact Animal Latency Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baldus, K.: Experimentelle Untersuchungen über die Entfernungslokalisation der Libellen (Aeschna cyanea). Z. vergl. Physiol.3, 475–505 (1926)Google Scholar
  2. Barlow, H.B., Blakemore, C., Pettigrew, J.D.: The neural mechanism of binocular depth discrimination. J. Physiol.193, 327–342 (1967)Google Scholar
  3. Barros-Pita, J.C., Maldonado, H.: A fovea in the praying mantis eye II. Some morphological characteristics. Z. vergl. Physiol.67, 79–92 (1970)Google Scholar
  4. Bishop, P.O., Coombs, J.S., Henry, G.H.: Responses to visual contours: spatio-temporal aspects of excitation in the receptive fields of simple striate neurons. J. Physiol.219, 625–657 (1971)Google Scholar
  5. Burkhardt, D., Darnhofer-Demar, B., Fischer, K.: Zum binokularen Entfernungssehen der Insekten 1. Die Strukture des Sehraums von Synsecten. J. comp. Physiol.87, 165–188 (1973)Google Scholar
  6. Collett, T.S., Land, M.F.: Visual control of flight behaviour in the hoverfly,Syritta pipiens L. J. comp. Physiol.99, 1–66 (1975)Google Scholar
  7. Duelli, P.: A fovea for e-vector orientation in the eye ofCataglyphis bicolor (Formicidae, Hymenoptera). J. comp. Physiol.102, 43–56 (1975)Google Scholar
  8. Etienne, A.S.: Analyse der schlagauslösenden Bewegungsparameter einer punktförmigen Beuteattrappe bei derAeschna-larve. Z. vergl. Physiol.64, 71–93 (1969)Google Scholar
  9. Exner, S.: Die Physiologie der facettirten Augen von Krebsen und Insekten. Leipzig und Wien: Franz Deuticke 1891Google Scholar
  10. Franceschini, N.: Sampling of the visual environment by the compound eye of the fly: Fundamentals and applications. In: Photoreceptor optics (eds. A.W. Snyder, R. Menzel). Berlin-Heidelberg-New York: Springer 1975Google Scholar
  11. Franceschini, N., Kirschfeld, K.: Les phénomènes de pseudopupille dans l'oeil composé deDrosophila. Kybernetik9, 159–182 (1971)Google Scholar
  12. Freeland, J.: Biological and social patterns in the Australian bulldog ants of the genusMyrmecia. Aust. J. Zool.6, 1–19 (1958)Google Scholar
  13. Friederichs, H.F.: Beiträge zur Morphologie und Physiologie der Sehorgane der Cicindelinen (Col.) Z. Morphol. Ökol. Tiere21, 1–171 (1931)Google Scholar
  14. Haskins, C.P., Haskins, E.F.: Notes on the biology and social behavior of the archaic ponerine ants of the generaMyrmecia andPromyrmecia. Ann. Ent. Soc. Amer.43, 461–491 (1950)Google Scholar
  15. Levin, L., Maldonado, H.: A fovea in the praying mantis eye. III. The centering of the prey. Z. vergl. Physiol.67, 91–101 (1970)Google Scholar
  16. Maldonado, H.: The deimatic reaction in the praying mantisStagmatoptera biocellata. Z. vergl. Physiol.68, 60–71 (1970)Google Scholar
  17. Maldonado, H., Barros-Pita, J.C.: A fovea in the praying mantis eye. I. Estimation of the catching distance. Z. vergl. Physiol.67, 58–78 (1970)Google Scholar
  18. Maldonado, H., Benko, M., Isera, M.: Study of the role of binocular vision in mantids to estimate long distances, using the deimatic reaction as an experimental situation. Z. vergl. Physiol.68, 72–83 (1970)Google Scholar
  19. Maldonado, H., Levin, L., Barros-Pita, J.C.: Hit distance and the predatory strike of the praying mantis. Z. vergl. Physiol.56, 237–257 (1967)Google Scholar
  20. Maldonado, H., Rodriguez, E.: Depth perception in the praying mantis. Physiol. Behav.8, 751–759 (1972)Google Scholar
  21. McCann, G.D., Dill, J.C.: Fundamental properties of intensity, form and motion perception in the visual nervous systems ofCalliphora phaenicia andMusca domestica. J. gen. Physiol.53, 385–413 (1969)Google Scholar
  22. Ogle, K.N.: Researches in binocular vision. Philadelphia: Saunders 1950Google Scholar
  23. Ogle, K.N.: Spatial localization through binocular vision. In: The eye (ed. H. Davson). New York: Academic Press 1962aGoogle Scholar
  24. Ogle, K.N.: Perception of distance and of size. In: The eye (ed. H. Davson). New York: Academic Press 1962bGoogle Scholar
  25. Reichardt, W.: First steps in a behavioral analysis of pattern discrimination in Diptera. In: Information processing in the visual systems of arthropods (ed. R. Wehner). Berlin-Heidelberg-New York: Springer 1972Google Scholar
  26. Robertson, P.D.: Pheromones involved in aggressive behavior in the ant,Myrmecia gulosa. J. Insect Physiol.17, 691–715 (1971)Google Scholar
  27. Varju, D.: Stationary and dynamic responses during visual edge fixation by walking insects. Nature255, 330–332 (1975)Google Scholar
  28. Wehner, R.: Pattern modulation and pattern detection in the visual systems of Hymenoptera. In: Information processing in the visual systems of arthropods (ed. R. Wehner). Berlin-Heidelberg-New York: Springer 1972Google Scholar
  29. Wehner, R.: Pattern recognition. In: The compound eye and vision of insects (ed. G.A. Horridge). Oxford: Clarendon Press 1975Google Scholar
  30. Wigglesworth, V.B.: The principles of insect physiology. London: Chapman and-Hall 1972Google Scholar
  31. Wilson, E.O.: The social biology of ants. Ann. Rev. Entomol.8, 345–368 (1963)Google Scholar
  32. Wilson, W.O.: The insect societies. Cambridge: Belknap Press 1971Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Sara E. Via
    • 1
  1. 1.Department of Neurobiology, Research School of Biological SciencesAustralian National UniversityCanberraAustralia

Personalised recommendations