Skip to main content
Log in

Retardation of electrolytic mass transport in collinear electric-magnetic fields

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The adverse effect of parallel magnetic and electric fields perpendicular to horizontal electrodes facing upwards in combined natural and forced convection was studied experimentally. The results are interpreted in terms of convective-diffusion models modified for the magnetic field interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

B:

magnetic flux density vector

B 0 :

magnitude of its vertically imposed value

c :

concentration of the electrolyte

D :

electrolyte diffusion coefficient

d :

anode-cathode separation distance

d e :

equivalent channel diameter

F :

Faraday's constant

i :

cathode current density

i:

current density vector

L :

electrode length

M :

molar mass of electrolyte

n :

interaction parameter

p :

pressure drop

(Ra):

Rayleigh number

(Re):

Reynolds number (characteristic length:d e)

(Sc):

Schmidt number

(Sh):

Sherwood number

v :

velocity

x :

co-ordinate along reactor length

y :

co-ordinate perpendicular to electrode surfaces

z :

valency

α :

densification coefficient

γ :

shape factor

¯γ :

magnetic interaction parameter

θ :

dimensionless electrolyte concentration

λ :

characteristic length

v :

kinematic viscosity

ρ :

density

σ :

electric conductance

τ :

residence time

FC:

related to forced convection

NC:

related to natural convection

L:

related to electrode length

x, y :

related to thex andy co-ordinates

∞:

related to fully developed (bulk) conditions

0:

related to the absence of the magnetic field

References

  1. T. Z. Fahidy,Chem. Eng. J. 7 (1974) 21.

    Google Scholar 

  2. Idem,ibid 17 (1979) 245.

    Google Scholar 

  3. I.A. Shercliff, ‘A Textbook of Magnetohydrodynamics’, Pergamon Press (1965) Ch. 4.

  4. S. Chandrasekhar,Phil. Mag. 7 (43) (1952) 501.

    Google Scholar 

  5. Y. Nakagawa,Proc. Roy. Soc. A240 (1957) 108.

    Google Scholar 

  6. S. Chandrasekhar,Phil Mag. 7 (45) (1954) 1177.

    Google Scholar 

  7. B. Lehnert and N. C. Little,Tellus 9 (1957) 97.

    Google Scholar 

  8. S. Chandrasekhar, ‘Hydrodynamic and Hydromagnetic Stability’, Clarendon Press, Oxford (1961).

    Google Scholar 

  9. V. J. Rossow, ‘On Flow of Electrically Conducting Fluids Over a Flat Plate in the Presence of a Transverse Magnetic Field’,Natl. Adv. Comm. Acron. Report no.1358 (1958).

  10. S. Mohanta and T. Z. Fahidy,Electrochim. Acta 21 (1976) 143.

    Google Scholar 

  11. Idem, ibid 21 (1976) 149.

    Google Scholar 

  12. S. W. Churchill,Amer. Inst. Chem. Eng. J. 23 (1977) 10.

    Google Scholar 

  13. S. Mohanta and T. Z. Fahidy,Canad. J. Chem. Engrg. 50 (1972) 248.

    Google Scholar 

  14. E. J. Fenech and C. W. Tobias,Electrochim. Acta 2 (1960) 311.

    Google Scholar 

  15. A. F. W. Cole and A. R. Gordon,J. Phys. Chem. 40 (1936) 733.

    Google Scholar 

  16. J. R. Selman and J. Newman,J. Electrochem. Soc. 118 (1971) 1070.

    Google Scholar 

  17. R. J. Goldstein, E. M. Sparrow and D. C. Jones,Int. J. Heat Mass Transfer 95 (1973) 405.

    Google Scholar 

  18. M. S. Quraishi, PhD thesis, University of Waterloo (1978).

  19. J. R. Lloyd and W. R. Moran,J. Heat Transfer 96 (1974) 443.

    Google Scholar 

  20. D. J. Pickett and B. R. Stanmore,J. Appl. Electrochem. 2 (1972) 151.

    Google Scholar 

  21. Z. Rotem and L. J. Claassen,Canad. J. Chem. Engrg. 47 (1969) 461.

    Google Scholar 

  22. P. M. Reilly,ibid 48 (1970) 168.

    Google Scholar 

  23. T. S. Rutherford, Project Report, University of Waterloo (1979).

  24. V. G. Levich, ‘Physicochemical Hydrodynamics’ Prentice Hall (1962) Section 23.

  25. Z. Rotem and L. J. Claassen,J. Fluid Mech. 39 (1969) 173.

    Google Scholar 

  26. G. R. Bopp,Chem. Engrg. Prog. 63 (10) (1967) 74.

    Google Scholar 

  27. V. G. Levich, ‘Physicochemical Hydrodynamics’ Prentice Hall (1962) Section 15.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fahidy, T.Z., Rutherford, T.S. Retardation of electrolytic mass transport in collinear electric-magnetic fields. J Appl Electrochem 10, 481–488 (1980). https://doi.org/10.1007/BF00614081

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00614081

Keywords

Navigation