Skip to main content
Log in

Development of integrated optics in the USSR

  • Published:
Journal of Applied Spectroscopy Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature cited

  1. H. F. Taylor and A. Yariv, “Waveguide optics,” Proc. IEEE,62, 1044 (1974).

    Google Scholar 

  2. W. S. Chang, M. W. Muller, and F. I. Rosenbaum, “Integrated optics,” Laser Appl.,2, 227 (1974).

    Google Scholar 

  3. G. Kogel'nik, “Introduction to integrated optics,” Usp. Fiz. Nauk,121, 695 (1977).

    Google Scholar 

  4. A. Yariv and M. Nakamura, “Periodic structures for integrated optics,” IEEE J. Quantum Electron.,13, 233 (1977).

    Google Scholar 

  5. M. Barnoski, An Introduction to Integrated Optics, Plenum, New York (1974).

    Google Scholar 

  6. E. M. Zolotov, V. A. Kiselev, and V. L. Sychugov, “Optical phenomena in thin-film waveguides,” Ups. Fiz. Nauk,112, 231 (1974).

    Google Scholar 

  7. A. M. Goncharenko and V. P. Red'ko, Introduction to Integrated Optics [in Russian], Nauka i Tekhnika, Minsk (1975).

    Google Scholar 

  8. A. N. Marchuk and V. E. Sotin, “Surface waves in layered dielectric waveguides,” in: First Scientific Conference of the Faculty of Physics, Mathematics and Natural Sciences. UDN. Physics section. Abstracts of Reports [in Russian], Moscow (1965), p. 22.

  9. L. N. Deryugin, A. N. Marchuk, and V. E. Sotin, “Properties of planar asymmetric dielectric waveguides on a dielectric backing,” Izv. Vyssh. Uchebn. Zaved., Radioelektron.,10, No. 2, 134 (1967).

    Google Scholar 

  10. L. N. Deryugin, V. E. Sotin, V. I. Anikin, A. N. Marchuk, A. N. Osovitskii, and A. T. Reutov, “Single-mode dielectric microwaveguides and waveguide devices for the optical range,” in: Conference on the Theory and Application of Dielectric Waveguides in the Technology of the Microwave and Optical Ranges [in Russian] MEI (1968). Reports Nos. 5, 37, 41, 43–47.

  11. L. N. Deryugin, A. N. Marchuk, and V. E. Sotin, “Device for measuring small losses in thin dielectric films in the submillimeter wavelength range,” USSR Patent No. 196,124; Byull. Izobret., No. 11 (1967).

  12. A. M. Goncharenko, “Electromagnetic properties of a planar anisotropic waveguide,” Zh. Tekh. Fiz.,37, 822 (1967).

    Google Scholar 

  13. V. A. Karpenko and A. M. Goncharenko, “Electromagnetic theory of injection lasers,” Zh. Prikl. Spektrosk.,13, 158 (1970).

    Google Scholar 

  14. A. M. Goncharenko, N. A. Gusak, and V. A. Karpenko, “Propagation of waves along a nonuniform layer,” Zh. Prikl. Spektrosk.,11, 104 (1969).

    Google Scholar 

  15. A. M. Goncharenko, V. A. Karpenko, and S. N. Stolyarov, “Waveguide properties of p-n junctions and electromagnetic theory of injection lasers, “ Preprint of the Institute of Physics of the Academy of Sciences of the Belorussian SSR [in Russian] (1971).

  16. V. P. Red'ko and L. M. Shteingart, “State and prospects of the use of the method of ion implantation for preparing waveguides and devices for integrated optics,” Zarubezhnaya Radioelektron., No. 1, 81 (1977).

    Google Scholar 

  17. Integrated Optics. Index of Literature [in Russian], No. 1, Mogilev (1975); No. 2 (1976), No. 3 (1977); No. 4 (1978).

  18. A. K. Zvezdin and V. A. Kotov, “Integrated mangetooptics,” Zarubezhnaya Radioelektron., No. 11, 77 (1976).

    Google Scholar 

  19. A. M. Goncharenko, V. K. Kiselev, V. P. Red'ko, and O. D. Shlyakhtichev, “Interference of light in diffusion and thin-film glass waveguides,” Kvantovaya Elektron.,5, 434 (1978).

    Google Scholar 

  20. N. A. Glushko, A. T. Reutov, and V. E. Sotin, “Properties of a planar dielectric waveguide with an anisotropic framing medium,” in: Theory of the Diffraction and Propagation of Waves [in Russian], Part II, Moscow (1973), p. 450.

  21. A. M. Goncharenko and V. A. Karpenko, “Waveguide properties of an anisotropic p-n junction layer,” Zh. Prikl. Spektrosk.,10, 748 (1969).

    Google Scholar 

  22. A. M. Goncharenko and V. A. Karpenko, “Propagation of waves in an anisotropic active layer,” Dokl. Akad. Nauk BSSR,11, 880 (1967).

    Google Scholar 

  23. N. I. Avdeeva and A. M. Goncharenko, “Properties of an anisotropic planar waveguide,” Dokl. Akad. Nauk BSSR,19, 4 (1975).

    Google Scholar 

  24. N. I. Avdeeva, “Propagation of light in thin-film anisotropic waveguides,” Vestsi Akad. Nauk BSSR, Ser. Fiz.-Mat. Navuk, No. 4, 108 (1976).

    Google Scholar 

  25. N. I. Avdeeva, “Propagation of an energy flux in a planar anisotropic optical waveguide,” Zh. Prikl. Spektrosk.,27, 155 (1977).

    Google Scholar 

  26. A. M. Goncharenko, “Propagation of electromagnetic waves in a planar anisotropic waveguide,” Vestsi Akad. Nauk BSSR, Ser. Fiz.-Mat. Navuk, No. 3, 89 (1965).

    Google Scholar 

  27. E. M. Zolotov, V. A. Kiselev, V. N. Pelekhatyi, A. M. Prokhorov, V. A. Chernykh, and E. A. Shcherbakov, “Investigation of anisotropic diffusion optical waveguides based on LiNbO3,” Kvantovaya Elektron.,5, 1379 (1978).

    Google Scholar 

  28. V. A. Kiselev and A. M. Prokhorov, “Optical processes in thin-film lasers and waveguides with an arbitrary distribution of the index of refraction,” Kvantovaya Elektron.,4, 544 (1977).

    Google Scholar 

  29. V. A. Kiselev and A. M. Prokhorov, “Tunneling and diffraction excitation of optical waveguides obtained by the diffusion method,” Kvantovaya Elektron.,2, 2026 (1975).

    Google Scholar 

  30. E. M. Zolotov, V. A. Kiselev, A. M. Prokhorov, and E. A. Shcherbakov, “Determination of the parameters of diffusion optical microwave guides,” Kvantovaya Elektron.,3, 1972 (1976).

    Google Scholar 

  31. E. M. Zolotov, V. A. Kiselev, V. M. Pelekhatyi, A. M. Prokhorov, and E. A. Shcherbakov, “Determination of the effective parameters for surface waves in a diffusion waveguide,” Kvantovaya Elektron.,4, 201 (1977).

    Google Scholar 

  32. E. M. Zolotov, V. A. Kiselev, and V. M. Pelekhatyi, “Determination of the characteristics of diffusion optical waveguides,” Kvantovaya Elektron., 5 (1978).

  33. E. M. Zolotov, V. A. Kiselev, V. M. Pelekhatyi, A. M. Prokhorov, V. A. Chernykh, and E. A. Shcherbakov, “Investigation of immersed diffusion optical waveguides,” Kvantovaya Elektron.,4, 1160 (1977).

    Google Scholar 

  34. E. M. Zolotov, V. M. Pelekhatyi, A. M. Prokhorov, S. A. Semiletov, and E. A. Shcherbakov, “Determination of profiles of LiNbO3 diffusion optical waveguides,” Pis'ma Zh. Tekh. Fiz.,3, 241 (1977).

    Google Scholar 

  35. V. I. Borodulin, E. M. Zolotov, V. P. Konyaev, S. A. Pashko, V. M. Pelekhatyi, and A. M. Prokhorov, “Investigation of optical waveguides based on GaAlAs-GaAs heterostructures,” in: Proceedings of the All-Union Conference on Semiconductor Heterostructures [in Russian], Ashkhabad (1978).

  36. V. I. Anikin, A. P. Gorobets, and A. N. Polovinkin, “Characteristics of planar optical waveguides prepared by solid-state diffusion,” Kvantavaya Elektron.,5, 123 (1978).

    Google Scholar 

  37. V. I. Anikin, A. P. Gorobets, and A. N. Polovinkin, “Investigations of the distribution of the index of refraction in planar optical waveguides prepared with the aid of solid-state diffusion and ion exchange,” Zh. Tekh. Fiz.,48, 797 (1978).

    Google Scholar 

  38. A. M. Goncharenko and L. A. Mazanik, “Propagation of TE waves along uniform layers of sinusoidally modulated media,” Vestsi Akad. Nauk BSSR, Ser. Fiz.-Mat. Navuk, No. 2, 94 (1974).

    Google Scholar 

  39. L. A. Mazanik, “Propagation of TM waves along nonuniform layers of sinusoidally modulated media,” Vestsi Akad. Nauk BSSR, Ser. Fiz.-Mat. Navuk, No. 6, 104 (1974).

    Google Scholar 

  40. N. I. Avdeeva, A. M. Goncharenko, and L. A. Mazanik, “Nonuniform (modulated) optical waveguides,” in: Abstracts of Reports to the Eighth All-Union Conference on Coherent and Nonlinear Optics [in Russian], Vol.2, Metsniereba, Tbilisi (1976), p. 351.

    Google Scholar 

  41. A. M. Goncharenko, V. A. Karpenko, and Yu. D. Stolyarov, “Propagation of light beams in thin-film waveguides,” Radiotekh. Elektron.,22, No. 5, 921 (1977).

    Google Scholar 

  42. J. E. Goell, “A circular-harmonic computer analysis of rectangular dielectric waveguides,” Bell Syst. Tech. J.,48, No. 7, 2133 (1969).

    Google Scholar 

  43. G. I. Veselov and G. G. Voronina, “Calculation of an open dielectric waveguide with a rectangular cross section,” Izv. Vyssh. Uchebn. Zaved., Radiofiz.,14, No. 12, 1891 (1971).

    Google Scholar 

  44. A. P. Gorobets, L. N. Deryugin, V. E. Sotin, “Analysis of rectangular dielectric waveguides,” Radiotekh. Elektron.,20, No.1, 86 (1975).

    Google Scholar 

  45. A. M. Goncharenko, V.A. Karpenko, Yu. D. Stolyarov, and V. F. Kholomeev, “Large-format approximation in the problem of the propagation of electromagnetic waves along a rectangular dielectric waveguide,” Izv. Vyssh. Uchebn. Zaved., Radiotekh.,20, No. 10, 1546 (1977).

    Google Scholar 

  46. V. I. Anikin, L. N. Deryugin, D. A. Letov, A. N. Marchuk, A. T. Reutov, V. E. Sotin, and T. K. Chekhlova, “Investigation of waveguide processes in elements of surface integrated optics,” in: Abstracts of Reports to the Sixth All-Union Symposium on the Diffraction and Propagation of Waves [in Russian], Vol.2, Erevan (1973), p. 310.

    Google Scholar 

  47. V. I. Anikin and A. P. Gorobets, “Investigation of strip optical waveguides prepared by solid-state diffusion,” Mikroelektronika,5, No. 2, 194 (1976).

    Google Scholar 

  48. Yu. S. Kuz'minov, N. M. Lyndin, A. M. Prokhorov, A. A. Spikhal'skii, V. A. Sychugov, and G. P. Shipulo, “Diffusion waveguides in glasses and electrooptical crystals,” Kvantovaya Elektron.,2, 2309 (1975).

    Google Scholar 

  49. A. P. Gorobets, L. N. Deryugin, O. A. Kurdyumov, and V. E. Sotin, “Dispersion equations and calculation of a slowed microstrip line,” Izv. Vyssh. Uchebn. Zaved., Radiofiz.,18, 1173 (1975).

    Google Scholar 

  50. A. M. Goncharenko, V. A. Karpenko, Yu. D. Stolyarov, and V. F. Kholomeev, “Investigations of anisotropic rectangular dielectric waveguides,” in: Abstracts of Reports to the Ninth All-Union Conference on Coherent and Nonlinear Optics [in Russian], Leningrad (1978).

  51. E. M. Zolotov, V. G. Mikhilevich, V. M. Pelekhatyi, A. M. Prokhorov, V. A. Chernykh, and E. A. Shcherbakov, “Stimulated emission of second harmonic in LiNbO3 optical waveguides,” Pis'ma Zh. Teor. Fiz.,4, 219 (1978); E. M. Zolotov, V. M. Pelekhatyi, A. M. Prokhorov, and V. A. Chernykh, “Investigation of the stimulated emission of second harmonic in diffusion LiNbO3 waveguides,” in: Proceedings of the Second All-Union Conference on Coherent and Nonlinear Optics [in Russian], Leningrad (1978), p. 116.

    Google Scholar 

  52. V. F. Marchenko and V. E. Sotin, “Frequency transformation in a nonlinear dielectric waveguide,”: Abstracts of Reports to the Fourth All-Union Conference on Nonlinear Optics [in Russian], Moscow State Univ. (1968), p. 84.

  53. L. N. Deryugin, A. N. Osovitskii, and V. E. Sotin, “Method of the electrical scanning of the diagram directivity of an antenna,” USSR Patent No. 346771 (1971); Byull. Izobret., No. 23 (1972).

  54. A. T. Reutov and P. P. Tarashchenko, “Multiplication of the frequency of coherent emission in an optical microwave guide with a nonlinear lithium niobate layer,” Opt. Spektrosk.,37, 786 (1974).

    Google Scholar 

  55. A. T. Reutov and P. P. Tarashchenko, “Observation of second harmonic and total frequency in nonlinear in nonlinear LiNbO3 waveguide,” Kvantovaya Elektron.,1, 1642 (1974).

    Google Scholar 

  56. L. N. Deryugin, A. T. Reutov, and P. P. Tarashchenko, “Parametric interaction of opposite light waves in a nonlinear optical microwave guide under transverse pumping,” Mikroelektronika,3, No. 4, 317 (1974).

    Google Scholar 

  57. K. Sakuda and A. Yariv, “Analysis of optical propagation in a corrugated dielectric waveguide,” Opt. Commun.,8, 4 (1973).

    Google Scholar 

  58. A. F. Bessonov, A. I. Gudzenko, L. N. Deryugin, V. A. Komotskii, G. A. Pogosov, V. E. Sotin, and V. P. Terichev, “Planar waveguide for the middle IR range with a support layer of a chalcogenide glass,” Kvantovaya Elektron.,3, 2289 (1976).

    Google Scholar 

  59. V. I. Anikin, “Investigation of functional film microwave guides for the middle IR range,” Izv. Vyssh. Uchebn. Zaved., Radioelektron., 18, 5 (1973).

    Google Scholar 

  60. J. E. Goell and R. D. Standley, “Sputtered glass waveguide for integrated optical circuits,” Bell. Syst. Tech. J.,48, No. 10, 3445 (1969).

    Google Scholar 

  61. A. M. Goncharenko, V. K. Kiselev, and V. P. Red'ko, “Preparation and investigation of waveguides form glasses of the ‘heavy crown’ type,” in: Abstracts of Reports to the Eighth All-Union Conference on Coherent and Nonlinear Optics [in Russian], Vol. 2, Metsniereba, Tbilisi (1976), p. 336.

    Google Scholar 

  62. V. K. Kiselev and V. P. Red'ko, “Thin-film waveguides from glasses of the ‘heavy crown“ type,” Kvantovaya, Elektron.,5, 134 (1978).

    Google Scholar 

  63. G. V. Venkin, L. N. Deryugin, V. P. Protasov, V. E. Sotin, and T. K. Chekhlova, “Laser based on a traveling-wave waveguide ring resonator,” Kvantovaya Elektron., No. 1 (13), 108 (1973).

    Google Scholar 

  64. A. A. Zlenko, A. M. Prokhorov, and V. A. Sychugov, “Tunable thin-film laser,” Kvantovaya Elektron., No. 6 (18), 74 (1973); “Tuning of the frequency of the emission of a thin-film laser,” Kvantovaya Elektron.,3, 2487 (1976).

    Google Scholar 

  65. A. A. Zlenko, A. M. Prokhorov, and V. A. Sychugov, “Thin-film laser with amplitude-modulated distributed feedback,” Pis'ma Zh. Tekh. Fiz.,18, 156 (1973).

    Google Scholar 

  66. D. B. Ostrowsky and A. Jacques, “Formation of optical waveguides in photoresist films,” Appl. Phys. Lett.,18, No. 12, 556 (1971).

    Google Scholar 

  67. R. E. Pogorelov, V. P. Red'ko, and L. M. Shteingart. “Thin-film waveguides from organic compounds of the aromatic series,” Kvantovaya Elektron.,2, 1847 (1975).

    Google Scholar 

  68. V. I. Anikin, L. N. Deryugin, A. N. Polovinkin, and V. E. Sotin, “Experimental investigations of planar optical waveguides from Ta2O5 obtained by reactive cathode sputtering,” Zh. Tekh. Fiz.,47, 2157 (1977).

    Google Scholar 

  69. V. K. Kiselev and V. P. Red'ko, “Preparation and investigation of thin-film waveguides from Al2O3,” in: Abstracts of Reports to the Ninth All-Union Conference on Coherent and Nonlinear Optics [in Russian], Leningrad (1978), p. 48.

  70. V. I. Anikin, L. N. Deryugin, D. A. Letov, A. N. Polovinkin, and V. E. Sotin, “Experimental investigations of passive planar optical elements,” Zh. Tekh. Fiz.,48, 1001 (1978).

    Google Scholar 

  71. V. I. Anikin and D. A. Letov, “Dispersion properties of planar optical elements,” Opt. Spektrosk.,44, 184 (1978).

    Google Scholar 

  72. V. A. Anikin and A. P. Gorobets, “Investigation of planar waveguides prepared by solid-state diffusion for integrated optics,” Kvantovaya Elektron.,2, 1465 (1975).

    Google Scholar 

  73. V. P. Red'ko and O. D. Shlyakhtichev, “Production of waveguide layers in glasses of the ‘barite flint’ and ‘barite crown’ types by means of the diffusion of lead oxide,” in: Abstracts of Reports to the Eighth All-Union Conference on Coherent and Nonlinear Optics [in Russian], Vol.2, Metsniereba, Tbilisi (1976), p. 342.

    Google Scholar 

  74. V. G. Pan'kin, S. N. Petukhova, V. Yu. Pchelkin, and V. V. Shashkin, “Waveguides obtained by the diffusion to titanium in lithium niobate,” in: Abstracts of Reports to the Eight All-Union Conference on Coherent and Nonlinear Optics [in Russian], Vol.2, Metsniereba, Tbilisi (1976), p. 337.

    Google Scholar 

  75. V. I. Anikin and L. A. Osadchev, “Planar optical waveguide from titanium oxide,” Mikroelektronika,6, No. 4, 369 (1977).

    Google Scholar 

  76. N. M. Lyndin, A. M. Prokhorov, A. A. Spikhal'skii, V. A. Sychugov, A. V. Tishchenko, and G. P. Shipulo, “Experimental determination of the effective thickness of diffusion waveguides,” Kvantovaya Elektron.5, 1323 (1978).

    Google Scholar 

  77. N. I. Aleshkevich, A. I. Voitenkov, and V. P. Red'ko, “Preparation of waveguide layers from glasses of the ‘barite crown’ and ‘barite flint’ types by the diffusion of Ag and Cu,” Kvantovaya Elektron., No. 4, 2254 (1977).

    Google Scholar 

  78. A. A. Zlenko, A. M. Prokhorov, V. A. Sychugov, and G. P. Shipulo, “Miniature laser and its relationship to thin-film optical waveguides,” Kvantovaya Elektron.,1, 2576 (1974),

    Google Scholar 

  79. V. P. Red'ko, N, G. Cherenda, and L. M. Shteingart, “Creation of optical waveguides in fused quartz by proton bombardment,” Kvantovaya Elektron.,2, 1849 (1975).

    Google Scholar 

  80. A. M. Goncharenko, V. P. Red'ko, and L. M. Shteingart, “Preparation and investigation of optical waveguides in quartz glass by means of bombardment with deuterons and boron ions,” in: Abstracts of Reports to the Eighth All-Union Conference on Coherent and Nonlinear Optics [in Russian], Metsniereba, Tbilisi (1976), p. 341.

    Google Scholar 

  81. L. N. Deryugin, A. N. Marchuk, and V. E. Sotin, “Emission from a planar dielectric waveguide,” Izv. Vyssh. Uchebn. Zaved., Radioelektron.,13, No. 3, 309 (1970).

    Google Scholar 

  82. L. N. Deryugin, A. N. Marchuk, and V. E. Sotin, “Resonance excitation of a planar dielectric waveguide through a supercritical layer by a plane wave,” Izv. Vyssh. Uchebn. Zaved., Radioelektron.,13, No. 8, 973 (1970).

    Google Scholar 

  83. V. I. Anikin, L. N. Deryugin, and V. E. Sotin, “Resonance excitation of a planar dielectric waveguide through a supercritical layer by a restricted beam,” Izv. Vyssh. Uchebn. Zaved., Radioelektron.,14, No. 4, 371 (1971).

    Google Scholar 

  84. L. A. Osadchev and V. V. Smirnyi, “Application of prisms with a spherical base in experimental investigations of optical waveguide systems,” Opt. Spektrosk.,42, 552 (1977).

    Google Scholar 

  85. V. I. Anikin and L. N. Deryugin, “Experimental study of resonance optical effects in two-layer thin films,” Opt. Spektrosk.,39, 956 (1975).

    Google Scholar 

  86. L. V. Iogansen, “Resonant tunneling of light in optical waveguides,” J. Opt. Soc. Am.,66, 972 (1976).

    Google Scholar 

  87. A. A. Zlenko and V. A. Sychugov, “Prismatic exciting device with a parabolic shutter profile,” Kvantovaya Elektron., No. 4, 101 (1973).

    Google Scholar 

  88. E. M. Zolotov and V. M. Pelekhatyi, “Investigation of the prismatic introduction of radiation into a thin-film waveguide,” Kvantovaya Elektron.,1, 979 (1974).

    Google Scholar 

  89. E. M. Zolotov and F. A. Logachev, “Investigation of the introduction of radiation through a narrowing side of an optical waveguide,” Kvantovaya Elektron.,1, 1873 (1974).

    Google Scholar 

  90. E. M. Zolotov, A. M. Prokhorov, and E. A. Shcherbakov, “Diffraction introduction of radiation into a thin-film waveguide,” Kvantovaya Elektron.,1, 1869 (1974).

    Google Scholar 

  91. S. I. Bozhevol'nyi, E. M. Zolotov, V. A. Kiselev, A. M. Prokhorov, and E. A. Scherbakov, “Focusing diffraction gratings for integrated optics,” Pis'ma Zh. Tekh. Fiz.,3, 746 (1977).

    Google Scholar 

  92. S. I. Bozhevol'nyi, E. M. Zolotov, V. A. Kiselev, V. M. Pelekhatyi, A. M. Prokhorov, and E. A. Shcherbakov, “Three-dimensional diffraction gratings for integrated optics,” Dokl. Akad. Nauk SSSR,235, 86 (1977).

    Google Scholar 

  93. A. V. Alekseev, S. Kh. Batygov, A. A. Zlenko, V, A. Sychugov, and G. P. Shipulo, “Asymmetric gratings on surfaces of glass waveguides,” Kvantovaya Elektron.,5, 218 (1978).

    Google Scholar 

  94. V. A. Kiselev, “Diffraction introduction of radiation into a thin-film waveguide,” Kvantovaya Elektron.,1, 1578 (1974).

    Google Scholar 

  95. V. A. Kiselev, “Resonance transformation and reflection of surface waves in a thin-film waveguide with a sinusoidally corrugated surface,” Kvantovaya Elektron.,1, 329 (1974).

    Google Scholar 

  96. V. A. Kiselev, “Conditions for the self-excitation of surface waves in an activated waveguide with a sinusoidally corrugated surface,” Kvantovaya Elektron.,1, 441 (1974).

    Google Scholar 

  97. V. A. Kiselev, “Excitation of thin-film waveguide with the aid of a three-dimensional diffraction grating,” Kvantovaya Elektron.,1, 320 (1974).

    Google Scholar 

  98. V. A. Kiselev, “Propagation, transformation, and stimulated emission of surface light waves in thin films with a harmonically modulated index of refraction,” Kvantovaya Elektron.,1, 899 (1974).

    Google Scholar 

  99. A. A. Zlenko, A. M. Prokhorov, A. A. Spikhal'skii, and V. A. Sychugov, “Emission of E waves on a corrugated section of a diffusion waveguide,” Kvantovaya Elektron.,3, 1056 (1976).

    Google Scholar 

  100. A. M. Prokhorov, A. A. Spikhal'skii, and V. A. Sychugov, “Emission of E and H waves on a corrugated section of a diffusion waveguide,” Kvantovaya Elektron.,3, 2227 (1976).

    Google Scholar 

  101. E. M. Zolotov, V. A. Kiselev, A. M. Prokhorov, and E. A. Shcherbakov, “Diffraction emission and excitation of E and H waves in diffusion optical waveguides,” Kvantovaya Elektron.,4, 1426 (1977).

    Google Scholar 

  102. A. A. Zlenko, V. A. Kiselev, A. M. Prokhorov, A. A. Spikhal'skii, and V. A. Sychugov, “Emission and reflection of light on a corrugated section of a waveguide,” Kvantovaya Elektron.,1, 2433 (1975).

    Google Scholar 

  103. Zh. I. Alferov, S. A. Gurevich, N. V. Klepikova, M. N. Mizerov, and E. L. Portnoi, “Injection Bragg heterolaser with a lower lasing threshold at 330°K,” Pis'ma Zh. Teor. Fiz.,3, 197 (1977).

    Google Scholar 

  104. A. M. Prokhorov, A. A. Spikhal'skii, V. A. Sychugov, and G. P. Shipulo, “Reflection and emission of E and H waves on a corrugated section of a diffusion waveguide,” Kvantovaya Elektron.,3, 1941 (1976).

    Google Scholar 

  105. A. M. Prokhorov, A. A. Spikhal'skii, and V. A. Sychugov, “Brewster analogs in a diffraction process,” Pis'ma Zh. Teor. Fiz.,4, 56 (1978).

    Google Scholar 

  106. L. N. Deryugin, S. A. Gurov, O. I. Ovcharenko, A. G. Timakin, and V. E. Sotin, “Holographic method for the preparation of planar optical elements, in: Abstracts of Reports to the Second All-Union Conference on Holography [in Russian], Part II, Kiev (1975), p. 83.

  107. A. I. Gudzenko, “Formation of many-petaled radiation diagrams with the aid of modulated interaction structures,” Izv. Vyssh. Uchebn. Zaved., Radiotekh.,6, No. 3, 315 (1963).

    Google Scholar 

  108. A. I. Gudzenko, “Resonance reflection in planar waveguides with periodic modulation of the dielectric thickness,” Radiotekh. Elektron.,21, No. 3, 451 (1976).

    Google Scholar 

  109. A. I. Gudzenko, “Bragg reflection in planar dielectric waveguides with periodic modulation of the thickness,” Radiotekh. Elektron.,21, No. 8, 1609 (1976).

    Google Scholar 

  110. A. I. Gudzenko and A. A. Tishchenko, “Transformation of modes in a planar corrugated dielectric waveguide,” in: Theory and Design of Information Systems Operating with New Elements [in Russian], Moscow (1977).

  111. A. I. Gudzenko, “Quality factor of planar dielectric resonators with periodic variation of the dielectric thickness,” Radiotekh. Elektron.,22, No. 2, 281 (1977).

    Google Scholar 

  112. A. I. Gudzenko, “Relationship between two parallel planar wave guides with periodic modulation of the thickness on a common support,” Izv. Vyssh. Uchebn. Zaved., Radioelektron.,20, No. 8, 3 (1977).

    Google Scholar 

  113. A. I. Gudzenko, “Resonance reflection in planar waveguides with a corrugated surface and monotonic variation of the slowing along the length,” Radiotekh. Elektron.,23, No. 6, 1297 (1978).

    Google Scholar 

  114. A. F. Bessonov, A. I. Gudzenko, V. F. Terichev, and N. I. Chernyshev, “Emitting grating in a planar waveguide for the middle IR range from a chalcogenide glass and barium fluoride,” Opt. -Mekh. Prom., No. 5, 74 (1978).

    Google Scholar 

  115. E. M. Zolotov, A. M. Prokhorov, and E. A. Shcherbakov, “Mode transformation in a corrugated thin-film waveguide” Kvantovaya Elektron.,2, 173 (1975).

    Google Scholar 

  116. A. M. Prokhorov, A. A. Spikhal'skii, V. A. Sychugov, and A. A. Khakimov, “Polarization effects in corrugated optical waveguides,” Kvantovaya Elektron.,5, 2132 (1978).

    Google Scholar 

  117. A. M. Prokhorov, A. A. Spikhal'skii, V. A. Sychugov, “Hybrid modes in DFB emitting structures,” Kvantovaya Elektron.,5, 1057 (1978).

    Google Scholar 

  118. A. M. Prokhorov, A. A. Spikhal'skii, and V. A. Sychugov, “Calculation and optimization of the parameters of a distribution-feedback emitting structure,” Kvantovaya Elektron.,5, 122 (1978).

    Google Scholar 

  119. A. M. Prokhorov, A. A. Spikhal'skii, and V, A. Sychugov, “Calculation and optimization of a distributedfeedback emitting structure,” Kvantovaya Elektron.,4, 989 (1977).

    Google Scholar 

  120. N. I. Avdeeva and A. M. Goncharenko, “Theory of thin-film waveguides,” Dokl. Akad. Nauk BSSR,18, No. 10, 875 (1974).

    Google Scholar 

  121. N. I. Avdeeva, V. I. Borisov, and V, I. Lebedev, “Some features of the stimulated emission of thinfilm lasers with an amplifying boundary medium,” Kvantovaya Elektron.,4, 1366 (1977).

    Google Scholar 

  122. I. V. Cheremiskin and T. K. Chekhlova, “Thin-film laser with distributed feedback and modulation of the gain,” Kvantovaya Elektron.,1, 686 (1974).

    Google Scholar 

  123. L. N. Deryugin, O. I. Ovcharenko, V. E. Sotin, and T. K. Chekhlova, “Rhodamine 6G thin-film laser based on a waveguide with a corrugated support,” Kvantovaya Elektron., 2, 2073 (1975).

    Google Scholar 

  124. I. I. Kolbin, O. I. Ovcharenko, V. E. Sotin, and I. V. Cheremiskin, “Rhodamine B distributed-feedback thin-film laser,” Kvantovaya Elektron.,2, 1571 (1975).

    Google Scholar 

  125. T. K. Chekhlova, “Investigations of active optical microwave guides,” Izv. Vyssh, Uchebn. Zaved., Radiofiz.,17, No. 5, 683 (1974).

    Google Scholar 

  126. L. N. Deryugin, I. V. Cheremiskin, and T. K. Chekhlova, “Thin-layer ring laser with waveguide pumping,” Kvantovaya Elektron.,2, 794 (1975).

    Google Scholar 

  127. Yu. I. Voloshehenko, L. N. Deryugin, O. A. Kurdyumov, V. E. Sotin, V. T. Frolkin, and I. V. Cheremiskin, “Characteristics of a thin-film laser logic element,” in: Abstracts of Reports to the Eighth All-Union Conference on Coherent and Nonlinear Optics [in Russian], Vol. 2, Metsniereba, Tbilisi (1976), p. 340.

    Google Scholar 

  128. I. I. Kolbin and I. V. Cheremiskin, “Quenching of the stimulated emission of a DFB thin-film laser by external superluminescence,” in: Abstracts of Reports to the Eighth All-Union Conference on Coherent and Nonlinear Optics [in Russian], Vol. 2, Metsniereba, Tbilisi (1976), p. 347.

    Google Scholar 

  129. D. A. Letov and A. N. Polovinkin, “Planar prismatic separator of TE and TM modes in optical waveguides,” Pis'ma Zh. Teor. Fiz.,3, 295 (1977).

    Google Scholar 

  130. L. N. Deryugin, A. S. Kuzali, and A. V. Chekan, “Characteristics of multiple-beam spectroanalyzers with thin-film input waveguides,” Opt. Spektrosk.41, 470 (1976).

    Google Scholar 

  131. A. S. Kuzali and A. V. Chekan, “Experimental investigation of a spectroanalyzer based on a thin-film waveguide with prismatic radiation input,” Kvantovaya Elektron.,3, 2457 (1976).

    Google Scholar 

  132. A. S. Kuzali, “Optical phenomena in a planar four-layer waveguide with a diffraction grating,” Opt. Spektrosk.,44, 1147 (1978).

    Google Scholar 

  133. A. S. Kuzali and A. V. Chekan, “Experimental investigations of radiation fields and spectroscopic characteristics of a thin-film waveguide with a planar diffraction grating,” Opt. Spektrosk.,44, 148 (1978).

    Google Scholar 

  134. A. I. Gudzenko, L. N. Deryugin, and V. E. Sotin, “Method of scanning an optical image with an optical beam,” USSR Patent No. 585,627 (1973); Byull. Izobret., No. 47 (1977).

  135. I. A. Gudzenko, L. N. Deryugin, and A. V. Chekan, “Device for transfer and reproduction of a line of an optical image,” USSR Patent No. 566,398; Byull. Izobret., No. 27 (1977).

  136. A. I. Gudzenko, L. N. Deryugin, L. A. Osadchev, V. E. Sotin, A. A. Tishchenko, and V. A. Shubin, “Investigation of thin-film directed couplers with controllable coupling,” in: New Elements in Information Systems [in Russian], Moscow (1977), p. 29.

  137. A. I. Gudzenko and L. N. Deryugin, “Limiting resolution of prismatic deflectors with dispersing media,” Izv. Vyssh. Uchebn. Zaved., Radioelektron.,18, No. 2, 43 (1975).

    Google Scholar 

  138. A. I. Gudzenko and L. N. Deryugin, “Method for the electrical oscillation of a beam in an antenna array,” USSR Patent No. 354,506 (1971); Byull. Izobret., No. 30 (1972).

  139. A. I. Gudzenko, O. B. Gusev, L. N. Deryugin, S. A. Zabuzov, V. V. Kludzin, L. A. Osadchev, B. N. Razzhivin, G. F. Sirotin, V. E. Sotin, and N. I. Chernyshev, “Interaction of optical and acoustical surface waves in a planar optical waveguide,” Radiotekh. Elektron.,21, No. 2, 386 (1976).

    Google Scholar 

  140. A. I. Gudzenko, I. L. Zubarev, and O. A. Kurdyumov, “Acoustooptical interaction of the Raman-Nata type in planar waveguides,” Radiotekh. Elektron.,22, No. 7, 1356 (1977).

    Google Scholar 

  141. A. I. Gudzenko and L. N. Deryugin, “Characteristics of a planar acoustooptical deflector with collinear propagation of the optical and acoustical surface waves,” Izv. Vyssh. Uchebn. Zaved., Radiotekh. Elektron.,20, No. 2, 36 (1977).

    Google Scholar 

  142. A. I. Gudzenko, L. N. Deryugin, S. A. Zabuzov, V. V. Kludzin, L. A. Osadchev, G. V. Sirotin, V. E. Sotin, B. P. Razzhivin, and A. A. Tishchenko, “Experimental investigation of a planar acoustooptical deflector,” Radiotekh. Elektron.,22, No. 6, 1305 (1977).

    Google Scholar 

  143. A. I. Gudzenko, L. N. Deryugin, and V. E. Sotin, “Planar acoustooptical deflector,” USSR Patent No. 561,163 (1972); Byull. Izobret., No. 21 (1977).

  144. A. F. Bessonov, A. I. Gudzenko, L. N. Deryugin, et al., “Realization of an integrated comparison operation with acoustical interactions in an optical waveguide,” in: Proceedings of the Tenth All-Union Conference on Quantum Acoustics and Acoustoelectronics [in Russian], Fan, Tashkent (1973), p. 45.

  145. L. A. Osadchev and V. E. Sotin, “Measurement of the losses of an acoustical surface wave in a planar acoustoooptical device,” Radiotekh. Elektron.,22, No. 6, 1309 (1977).

    Google Scholar 

  146. E. M. Zolotov, V. M. Pelekhatyi, A. M. Prokhorov, and E. A. Shcherbakov, “Investigation and determination of the optimal characteristics of a thin-film electrooptical modulator in LiNbO3,” Pis'ma Zh. Tekh. Fiz., No. 3, 226 (1977).

    Google Scholar 

  147. E. M. Zolotov, V. M. Pelekhatyi, A. M. Prokhorov, and E. A. Shcherbakov, “Investigation and determination of the optimal characteristics of a thin-film electrooptical modulator in LiNbO3,” Kvantovaya Elektron.,5, 187 (1978).

    Google Scholar 

  148. A. V. Belov, I. F. Belyaletdinov, E. M. Dianov, E. M. Zolotov, A. M. Prokhorov, and E. A. Shcherbakov, “Experimental model of device for fiber-optical communications with a thin-film modulator,” Kvantovaya Elektron.,5, 214 (1978).

    Google Scholar 

  149. A. A. Zlenko, V. A. Sychugov, A. M. Prokhorov, and V. A. Kiselev, “Thin-film mode selector and its possible applications,” Kvantovaya Elektron.,1, 444 (1974).

    Google Scholar 

  150. V. M. Ermolaev, F. A. Logachev, N. M. Lyndin, B. B. Meshkov, A. M. Prokhorov, V. A. Sychugov, and G. P. Shipulo, “Diffusion waveguides in LiNbO3 and electrooptical modulation of light in them,” Kvantovaya Elektron.,3, 2074 (1976).

    Google Scholar 

  151. E. M. Zolotov, V. M. Pelekhatyi, A. M. Prokhorov, E. V. Rakova, S. A. Semiletov, S. M. Shkornyakov, and E. A. Shcherbakov, “Acoustooptical thin-film deflector in LiNbO3,” Kvantovaya Elektron.,4, 460 (1977).

    Google Scholar 

  152. A. B. Sotskii, “Theory of electrooptical modulators based on rectangular waveguides,” in: Abstracts of Reports to the Ninth All-Union Conference on Coherent and Nonlinear Optics [in Russian], Leningrad (1978), p. 126.

  153. I. G. Voitenko and V. P. Red'ko, “Acoustooptical waveguide deflector for opposite acoustical waves,” in: Abstracts of Reports to the Ninth All-Union Conference on Coherent and Nonlinear Optics [in Russian], Leningrad (1978), p. 113.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 29, No. 6, pp. 987–997, December, 1978.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goncharenko, A.M., Deryugin, L.N., Prokhorov, A.M. et al. Development of integrated optics in the USSR. J Appl Spectrosc 29, 1435–1444 (1978). https://doi.org/10.1007/BF00613539

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00613539

Keywords

Navigation