Advertisement

Oxidation of Metals

, Volume 9, Issue 1, pp 1–25 | Cite as

Defect structure of NiO and rates and mechanisms of formation from atomic oxygen and nickel

  • Jerry D. Christian
  • William P. Gilbreath
Article

Abstract

The oxidation of nickel by atomic oxygen at pressures from 6×10−3 to 0.33 Torr between 1050 and 1250 K has been investigated. In these ranges, the oxidation was found to follow the parabolic rate law, viz.k p = 1.14×10−5 exp(−13410/T)g2 cm−4sec−1 for films of greater than 1 μm thickness and was pressure-independent. The activation enthalpy for the oxidation reaction was 27±3 kcal mole−1. Of a number of possible mechanisms and defect structures considered, it was shown that, based on reaction activation enthalpies, impurity effects, pressure independence, and magnitudes of the rates, the most likely was a saturated surface defect model for atomic oxidation. A possible model judged somewhat less likely was one having equilibrium concentrations of doubly ionized cationic defects rate-controlling in both atomic and molecular oxygen. From comparisons of the appropriate processes, the following enthalpy values were derived: ΔH* (Ni diffusion in NiO) = 26.5 ± 8 kcal mole−1 and ΔH f 0 (doubly ionized cation vacancies in NiO from atomic oxygen) = − 2.1 ± 6.0 kcal mole−1. The recombination coefficient of atomic oxygen on oxidized nickel was determined to be 0.14 ± 0.06 in the temperature range 985 to 1100 K.

Key words

atomic oxygen nickel oxidation defects 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Wagner,Z. phys. Chem. 34, 455 (1938).Google Scholar
  2. 2.
    H. H. von Baumbach and C. Wagner,Z. phys. Chem. 24, 59 (1934).Google Scholar
  3. 3.
    E. J. Verway, P. W. Haaijman, F. C. Romeijn, and G. W. Van Oosterhout,Controlled-Valency Semiconductors, Phillips Research Papers, Vol. 5, 1950, pp. 173–187.Google Scholar
  4. 4.
    K. Fueki and J. B. Wagner, Jr.,J. Electrochem. Soc. 112, 384 (1965).Google Scholar
  5. 5.
    O. Kubaschewski and B. B. Hopkins,Oxidation of Metals and Alloys (Butterworths London, 1962), pp. 20–23.Google Scholar
  6. 6.
    N. G. Eror and J. B. Wagner, Jr.,Phys. Stat. Sol. 35, 641 (1969).Google Scholar
  7. 7.
    R. Uno,J. Phys. Soc. Japan 22, 1502 (1967).Google Scholar
  8. 8.
    S. P. Mitoff,J. Chem. Phys. 35, 882 (1961).Google Scholar
  9. 9.
    S. Pizzini and R. Morlotti,J. Electrochem. Soc. 114, 1179 (1967).Google Scholar
  10. 10.
    G. H. Meier and R. A. Rapp,Z. phys. Chem. N.F. 74, 168 (1971).Google Scholar
  11. 11.
    C. M. Osborn and R. W. Vest,J. Phys. Chem. Solids 32, 1331 (1971).Google Scholar
  12. 12.
    F. Kaufman,Proc. Roy. Soc. A247, 123 (1958).Google Scholar
  13. 13.
    F. Kaufman,J. Chem. Phys. 28, 352 (1958).Google Scholar
  14. 14.
    F. Kaufman, inProgress in Reaction Kinetics, G. Porter, Ed. (Pergamon Press, New York, 1961), pp. 8–10.Google Scholar
  15. 15.
    J. D. Christian and W. P. Gilbreath, Rates and Mechanisms of the Atomic Oxygen Reaction with Nickel at Elevated Temperatures, NASA TM X-62, 295 (August 1973); J. D. Christian and W. P. Gilbreath,IEEE Trans. Plasma Science, in press.Google Scholar
  16. 16.
    K. Hauffe, L. Pethe, R. Schmidt and S. R. Morrison,J. Electrochem. Soc. 115, 456 (1968).Google Scholar
  17. 17.
    H. H. Engell, K. Hauffe, and B. Ilschner,Z. Electrochem. 58, 478 (1954).Google Scholar
  18. 18.
    E. A. Gulbranson and K. F. Andrew,J. Electrochem. Soc. 101, 128 (1954).Google Scholar
  19. 19.
    C. Wagner,Corrosion Sci. 10, 641 (1970).Google Scholar
  20. 20.
    M. J. Graham and M. Cohen,J. Electrochem. Soc.-Solid-State Sci. Tech. 119, 879 (1972).Google Scholar
  21. 21.
    R. Hales, A. C. Hill, and R. K. Wild,Corrosion Sci. 13, 325 (1973).Google Scholar
  22. 22.
    J. M. Perrow, W. W. Smeltzer, and R. K. Ham,Acta Met. 15, 577 (1967).Google Scholar
  23. 23.
    J. M. Perrow, W. W. Smeltzer, and J. D. Embury,Acta Met. 16, 1209 (1968).Google Scholar
  24. 24.
    F. A. Kröger,The Chemistry of Imperfect Crystals (North Holland, Amsterdam, 1964).Google Scholar
  25. 25.
    C. Wagner,Z. phys. Chem. 21, 25 (1933).Google Scholar
  26. 26.
    C. Wagner,Z. phys. Chem. 32, 447 (1936).Google Scholar
  27. 27.
    D. L. Douglass, A. Kumar, and M. Nasrallah, The Development of Oxidation Resistant Alloys for High Temperature Structural Use, UCLA-ENG-7260 (Aug. 1972).Google Scholar
  28. 28.
    P. G. Dickens, R. Heckingbottom, and J. W. Linnett,Trans. Faraday Soc. 65, 2235 (1969).Google Scholar
  29. 29.
    G. J. Koel and P. J. Geilings,Oxid. Metals 5, 185 (1972).Google Scholar
  30. 30.
    W. C. Tripp and N. M. Tallan,J. Am. Ceram. Soc. 53, 531 (1970).Google Scholar
  31. 31.
    R. Lindner,Proc. 10th Solvay Conf., Brussels, pp. 459–469 (1956).Google Scholar
  32. 32.
    R. Lindner,3rd Intern. Meeting on the Reactivity of Solids, Madrid, pp. 509–520 (1956).Google Scholar
  33. 33.
    R. Lindner and A. Akerstrom,Disc. Faraday Soc. 23, 133 (1957).Google Scholar
  34. 34.
    N. Shim and W. Moore,J. Chem. Phys. 26, 802 (1957).Google Scholar
  35. 35.
    Y. D. Tretyakov and R. A. Rapp,Trans. AIME 245, 1235 (1969).Google Scholar
  36. 36.
    J. P. Bauer, R. W. Bartlett, J. T. Ong, Jr., and W. M. Fassell, Jr.,J. Electrochem. Soc. 110, 185 (1963).Google Scholar
  37. 37.
    J. A. Sartell and C. H. Li,J. Inst. Metals 90, 92 (1961).Google Scholar
  38. 38.
    E. A. Gulbranson and K. F. Andrew,J. Electrochem. Soc. 104, 451 (1957).Google Scholar
  39. 39.
    L. Berry and K. Paipassi,Compt. Rend. 255, 2253 (1962).Google Scholar
  40. 40.
    S. F. Frederick and I. Cornet,J. Electrochem. Soc. 102, 285 (1955).Google Scholar
  41. 41.
    G. E. Zima,Trans. Am. Soc. Mat. 49, 924 (1957).Google Scholar
  42. 42.
    W. L. Phillips, Jr.,J. Electrochem. Soc. 110, 1014 (1963).Google Scholar
  43. 43.
    M. J. Graham, G. I. Sproule, D. Caplan, and M. Cohen,J. Electrochem. Soc.— Solid-State Sci. Tech. 119, 883 (1972).Google Scholar
  44. 44.
    D. R. Stull and H. Prophet,JANAF Thermochemical Tables, 2nd ed., NSRDS-NBS 37 (1971).Google Scholar
  45. 45.
    G. C. Wood, I. C. Wright, and J. M. Ferguson,Corrosion Sci. 5, 645 (1965).Google Scholar
  46. 46.
    E. A. Gulbranson and K. F. Andrew,J. Electrochem. Soc. 105, 363 (1958).Google Scholar
  47. 47.
    D. Caplan, M. J. Graham, and M. Cohen,J. Electrochem. Soc.-Solid-State Sci. Tech. 119, 1205 (1972).Google Scholar
  48. 48.
    P. Kofstad,Nonstoichiomeiry, Diffusion, and Electrical Conductivity in Binary Oxides (Wiley, Interscience, New York, 1972), pp. 20–21.Google Scholar
  49. 49.
    L. Horn,Z. Metallk. 40, 73 (1949).Google Scholar
  50. 50.
    J. J. van den Broek and J. L. Meijering,Acta Met. 76, 375 (1960).Google Scholar
  51. 51.
    D. Stöckel and H. J. Grabke,Z. Metallk. 64, 286 (1973). [NASA Technical Translation, NASA TT F-15, 156 (Nov. 1973)].Google Scholar
  52. 52.
    G. A. Melin and R. J. Madix,Trans. Faraday Soc. 67, 198 (1971).Google Scholar
  53. 53.
    J. C. Greaves and J. W. Linnett,Trans. Faraday Soc. 54, 1323 (1958).Google Scholar
  54. 54.
    P. G. Dickens and M. B. Sutcliffe,Trans. Faraday Soc. 60, 1272 (1964).Google Scholar
  55. 55.
    Handbook of Chemistry and Physics, 46th ed. (The Chemical Rubber Publishing Company, Cleveland, Ohio, 1965), p. El46.Google Scholar
  56. 56.
    Y. S. Touloukian,Thermophysical Properties of High Temperature Solid Materials (Mac-Millan Co., New York, 1967).Google Scholar
  57. 57.
    J. W. Linnett and D. G. H. Marsden,Proc. Roy. Soc. A234, 489 (1956).Google Scholar
  58. 58.
    P. Harteck and V. Kopsch,Z. phys. Chem. 12, 327 (1930).Google Scholar
  59. 59.
    D. E. Rosner and H. D. Allendorf,J. Electrochem. Soc. 114, 305 (1967).Google Scholar
  60. 60.
    D. E. Rosner and H. D. Allendorf,Heterogeneous Kinetics at Elevated Temperatures, G. R. Belton and W. L. Worrell, Eds. (Plenum Press, New York, 1970), pp. 231–251.Google Scholar
  61. 61.
    B. D. Blaustein and Y. C. Fu,Physical Methods of Chemistry, Vol. I, Part IIB, A. Weissberger and B. Rossiter, Eds. (J. Wiley and Sons, New York, 1971), p. 123.Google Scholar
  62. 62.
    S. N. Foner and R. L. Hudson,J. Chem. Phys. 25, 601 (1950).Google Scholar
  63. 63.
    L. W. Bader and E. A. Ogryzlo,Disc. Faraday Soc. 37, 461 (1964).Google Scholar
  64. 64.
    G. C. Fryburg, F. J. Kohl, and C. A. Stearns, Enhancement of Oxidative Vaporization of Chromium (III) Oxide and Chromium by Oxygen Atoms, NASA TN-D7627 (1974).Google Scholar
  65. 65.
    F. M. McTaggart,Plasma Chemistry in Electrical Discharges (Elsevier Publishing Co., New York, 1967).Google Scholar

Copyright information

© Plenum Publishing Corporation 1975

Authors and Affiliations

  • Jerry D. Christian
    • 1
    • 2
  • William P. Gilbreath
    • 1
  1. 1.Ames Research CenterNASACalifornia
  2. 2.National Research Council Senior Postdoctoral Resident Research AssociateUSA

Personalised recommendations