Mechanics of Composite Materials

, Volume 27, Issue 5, pp 567–573 | Cite as

Applied model of composite with incomplete bonding and finite length of reinforcing elements

  • Ya. A. Brauns
  • K. A. Rocens
Article

Keywords

Apply Model Finite Length Incomplete Bonding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    A. F. Kregers and Yu. G. Melbardis, “Determination of deformability of three-dimensionally reinforced composites by method based on averaging rigidities,” Mekh. Polim., No. 1, 3–8 (1978).Google Scholar
  2. 2.
    H. L. Cox, “The elasticity and strength of paper and other fibrous materials,” Br. J. Appl. Phys.,3, No. 3, 72–79 (1952).Google Scholar
  3. 3.
    A. K. Malmeister, V. P. Tamuzh, and G. A. Teters, Strength of Rigid Polymeric Materials [in Russian], 2nd ed., Riga (1972).Google Scholar
  4. 4.
    R. M. Christensen, Mechanics of Composite Materials, Wiley, New York (1979).Google Scholar
  5. 5.
    K. A. Rocens (Rotsens), Wood Treatment to Regulate Properties [in Russian], Riga (1979).Google Scholar
  6. 6.
    Ya. A. Brauns and K. A. Rocens (Rotsens), “Elastic characteristics of material reinforced with orthotropic flat particles,” in: Mechanics of Reinforced Plastics [in Russian], Riga (1989), pp. 12–17.Google Scholar
  7. 7.
    B. W. Shaffer, “Elastoplastic stress distribution within reinforced plastics loaded normal to its internal filaments,” AIAA J.,6, No. 12, 2316–2324 (1968).Google Scholar
  8. 8.
    A. M. Skudra and F. Ya. Bulavs, Structural Theory of Reinforced Plastics [in Russian], Riga (1978).Google Scholar
  9. 9.
    É. Z. Plume and R. D. Maksimov, “Algorithm for determination of elastic characteristics of flexible multifiber composite material,” Algoritmy Programmy, No. 3, 55 (1980).Google Scholar
  10. 10.
    Ya. A. Brauns, V. K. Kravinskis, and M. O. Spilva, “Determination of elastic characteristics of deformability of concrete with finely divided reinforcing material,” in: Design and Optimization of Engineering Structures [in Russian], Riga (1986), pp. 87–97.Google Scholar
  11. 11.
    A. Zh. Lagzdin', V. P. Tamuzh, G. A. Teters, and A. F. Kregers, Orientational Averaging Method in Mechanics of Materials [in Russian], Riga (1989).Google Scholar
  12. 12.
    Yu. A. Dzenis and R. D. Maksimov, “Prediction of strain properties of polymer composite with granular-fibrous filler,” Mekh. Kompozitn. Mater., No. 5, 898–909 (1987).Google Scholar
  13. 13.
    Ya. Ya. Daube, “Mechanical characteristics of wood-chip board in compression,” in: Design and Optimization of Engineering Structures [in Russian], Riga (1990), pp. 87–96.Google Scholar
  14. 14.
    A. A. Pozdnyakov, Strength and Elasticity of Composite Wood Materials [in Russian], Moscow (1988).Google Scholar
  15. 15.
    E. Plath and K. Albers, “Elastizität und Plastizität von Span und Furnierplatten bei Druckbelastungen senkreckt zur Plattenebene (Querdruckverhalten),” Holz Roh-Werkst.,26, No. 9, 325–327 (1968).Google Scholar
  16. 16.
    Ya. A. Brauns, K. A. Rocens (Rotsens), and U. A. Suntazh, “Dependences of elastic characteristics of wood-chip board on contents of components,” in: Mechanics of Reinforced Plastics [in Russian], Riga (1989), pp. 5–11.Google Scholar
  17. 17.
    A. P. Markovs, “Evaluation of nonuniformity of wood-chip board from surface to interior,” in: Design and Optimization of Engineering Structures [in Russian], Riga (1990), pp. 104–109.Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • Ya. A. Brauns
    • 1
  • K. A. Rocens
    • 1
  1. 1.Riga Technical UniversityLatvia

Personalised recommendations