Advertisement

Oxidation of Metals

, Volume 9, Issue 3, pp 259–274 | Cite as

Mechanical stresses developed in austenitic Fe-Cr-Ni alloys by oxidation in a CO2 atmosphere

  • Anders Norin
Article

Abstract

The stresses developed during oxidation of Fe-Cr-Ni alloys in a CO2 atmosphere at 600 and 700°C have been estimated by measuring the deflection of thin foil specimens oxidized on one side only. One side of the specimen was protected from oxidation by an Al-Au film which was oxidized prior to the deflection experiment. The character and magnitude of the stresses measured are explained by electron microscope and x-ray measurements. During the initial stage of oxidation, high stresses are formed due to epitaxial growth of the oxide. These stresses are high enough to plastically deform the alloy. As oxidation proceeds, the stress decreases and eventually reaches a “steady-state” value. During this stage, the alteration in composition and molecular volume of the oxide, the formation of carbides, and the growth of whiskers determine the stresses.

Keywords

stress oxidation austenitic steel CO2 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. B. Pilling and R. E. Bedworth,J. Inst. Met. 29, 529–591 (1923).Google Scholar
  2. 2.
    P. D. Dankov and P. V. Churaev,Dokl. Akad. Nauk SSSR 73, 1221–1224 (1950).Google Scholar
  3. 3.
    U. R. Evans,Symposium on Internal Stresses in Metals and Alloys (Institute of Metals, London, 1947), pp. 291–310.Google Scholar
  4. 4.
    J. Stringer,Corros. Sci. 10, 513–544 (1970).Google Scholar
  5. 5.
    T. Ericsson,Oxid. Met. 2, 173–205 (1970).Google Scholar
  6. 6.
    T. Ericsson, Doctoral thesis, Royal Institute of Technology, Sweden (1970).Google Scholar
  7. 7.
    T. Ericsson,Oxid. Met. 2, 398–415 (1970).Google Scholar
  8. 8.
    R. E. Pawel, J. V. Cathcart, and J. J. Campbell,J. Electrochem. Soc. 110, 551–557 (1963).Google Scholar
  9. 9.
    W. K. Appleby and R. F. Tylecote,Corros. Sci. 10, 325–341 (1970).Google Scholar
  10. 10.
    W. Jaenicke, S. Leistikow, and A. Stadler,J. Electrochem. Soc. 111, 1031–1037 (1964).Google Scholar
  11. 11.
    R. E. Pawel and J. J. Campbell,J. Electrochem. Soc. 116, 828–832 (1969).Google Scholar
  12. 12.
    V. R. Howes and C. N. Richardson,Corros. Sci. 9, 385–394 (1969).Google Scholar
  13. 13.
    A. Norin, Internal Report Aktiebolaget Atomenergi, Sweden AE-RMM-1733 (1969).Google Scholar
  14. 14.
    V. M. Morton,Corros. Sci. 9, 261–270 (1969).Google Scholar
  15. 15.
    S. Nomura, C. Akutsu, and I. Saruyama, NSJ-TR 94 (1967).Google Scholar
  16. 16.
    R. F. Tylecote,J. Iron Steel Inst. 196, 135–141 (1960).Google Scholar
  17. 17.
    C. J. Smithells,Metals Reference Book (Butterworth, London, 1962).Google Scholar
  18. 18.
    K. W. Andrews, D. J. Dyson, and S. R. Keown,Interpretation of Electron Diffraction Patterns (Hilger & Watts, Ltd., London, 1967).Google Scholar
  19. 19.
    P. Kofstad,High Temperature Oxidation of Metals (John Wiley & Sons, New York, 1966).Google Scholar
  20. 20.
    J. M. Francis,J. Appl. Chem. 16, 264–265 (1966).Google Scholar
  21. 21.
    S. R. Keown and D. J. Dyson,J. Iron Steel Inst. 204, 832–836 (1966).Google Scholar
  22. 22.
    V. R. Howes,Corros. Sci. 7, 735–746 (1967).Google Scholar
  23. 23.
    J. D. Noden, C. J. Knights, and M. W. Thomas,Br. Corros. J. 3, 47–55 (1968).Google Scholar
  24. 24.
    H. Fischmeister,Mem. Sci. Rev. Metall. 62, 211–221 (1965) (special number).Google Scholar
  25. 25.
    W. Jaenicke, S. Leistikow, A. Stadler, and L. Albert,Mem. Sci. Rev. Metall. 62, 231–239 (1965) (special number).Google Scholar

Copyright information

© Plenum Publishing Corporation 1975

Authors and Affiliations

  • Anders Norin
    • 1
  1. 1.Telefonaktiebolaget L. M. EricssonTyresöSweden

Personalised recommendations