Earth, Moon, and Planets

, Volume 69, Issue 2, pp 173–199 | Cite as

Signatures of solar wind interaction with the nightside ionosphere of Venus

  • Harry A. TaylorJr.
  • Leonard Kramer
  • Paul A. Cloutier
  • Shannon S. Walker


Plasma and field relationships observed across the nightside of Venus evidence a chaotic variety of interactions between the ionosphere and the combined effect of the solar wind and interplanetary magnetic field draped about the planet. Close examination of these data reveal within the chaos a number of repeatable signatures key to understanding fundamental field-plasma interactions. Observed from the Pioneer Venus Orbiter, (PVO), nightside conditions range from extensive, “full-up” ionospheres with little evidence of dynamic or energetic perturbations, to an almost full depletion, sometimes described as “disappearing ionospheres”. Between these extremes, the ionospheric structure is often irregular, sometimes exhibiting well-defined density troughs, at other times complex intervals of either abundant or minimal plasma concentration. Consistently, large B-fields (typically exceeding 5–10 nanoteslas) coincide with plasma decreases, whereas stable, abundant plasma distributions are associated with very low-level field. We examine hundreds of nightside orbits, identifying close correlations between regions of elevated magnetic fields featuring polarity reversals, and (a) exclusive low-frequency or distinctive broadband noise, or both, in the electric field data, (b) turbulent, superthermal behavior of the the ions and electrons. We review extensive studies of nightside fields to show that the correlations observed are consistent with theoretical arguments that the presence of strong magnetic fields within “normal” ionospheric heights indicates the intrusion of magnetosheath fields and plasma within such regions. We find abundant evidence that the “ionosphere” is frequently disrupted by such events, exhibiting a chaotic, “auroral-like” complexity appearing over a wide range of altitude and local time. We show that field-plasma disturbances, widely suggested to be similar to conditions in the Earth's auroral regions, are tightly linked to the electric field noise otherwise attributed to lightning. Owing to the coincidence inherent in this relationship, we suggest that natural, predictable plasma instabilities associated with the plasma gradients and current sheets evident within these events produce the E-field noise. The data relationships argue for a more detailed investigation of solar wind induced E-field noise mechanisms as the appropriate scientific procedure for invoking sources for the noise previously attributed to lightning. Consistent with these views, we note that independent analyses have offered alternative explanations of the noise as arising from ionospheric disturbances, that repeated searches for optical evidence of lightning have found no such evidence, and that no accepted theoretical work has yet surfaced to support the inference of lightning at Venus.


Solar Wind Current Sheet Interplanetary Magnetic Field Ionospheric Disturbance Solar Wind Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Borucki, W. J., Dyer, J. W., Thomas, G. Z., Jordan, J. C., and Comstock, D. A.: 1981,Geophys. Res. Lett. 8, 233.Google Scholar
  2. Borucki, W. J., Dyer, J. W., and Phillips, J. R.: 1991,J. Geophys. Res. 96, 11033.Google Scholar
  3. Brace, L. H., Theis, R. F., Mayr, H. G., Curtis, S. A., and Luhmann, J. G.: 1982,J. Geophys. Res. 87, 199.Google Scholar
  4. Brace, L. H. and Kliore, A. J.: 1991,Space Sci Rev. 81.Google Scholar
  5. Cravens, T. E., Brace, L. H., Taylor, H. A., Jr., Russell, C. T., Knudsen, W. L., Miller, K. L., Barnes, A, Mihalov, J. D., Scarf, F. L., Quenon, S. J., and Nagy, A. F.: 1982,Icarus 51, 271.Google Scholar
  6. Curtis, S. A., Brace, L. H., Niemann, H. B., and Scarf, F. L.,: 1985,J. Geophys. Res. 90, 6631.Google Scholar
  7. Esposito, L. W., Knollenberg, R. G., Marov, M. Ya, Toon, O. B., and Turco, R. P.: 1983,Venus, U. of Arizona Press, Tucson, AZ, 484.Google Scholar
  8. Fox, J. L. and Taylor, H. A. Jr.: 1990,Geophys. Res. Lett. 17, 1625.Google Scholar
  9. Fredericks, R. W., Scarf,. F. L., and Russell, C. T.: 1973,J. Geophys. Res. 78, 2133.Google Scholar
  10. Grebowsky, J. M. and Curtis, S. A,: 1981,Geophys. Res. Lett. 8, 1723.Google Scholar
  11. Grebowsky, J. M., Mayr, H. G., Curtis, S. A., and Taylor, H. A. Jr.: 1983,J. Geophys. Res. 88, 3005.Google Scholar
  12. Grebowsky, J. M., Kasprzak, W. T., Hartle, R. E., Mahajan, K. K., and Wagner, T. C. G.: 1993,J. Geophys. Res. 98, 9055.Google Scholar
  13. Hartle, R. E. and Grebowsky, J. M.: 1990,J. Geophys. Res. 95, 31.Google Scholar
  14. Ho, C. M., Strangeway, R. J., and Russell, C. T.: 1992,J. Geophys. Res. 97, 673.Google Scholar
  15. Huba, J. D.: 1992,J. Geophys. Res. 97, 43.Google Scholar
  16. Kasprzak, W. T., Taylor, H., A. Jr., Brace, L. H., Niemann, H. B., and Scarf, F. L.: 1982,Planet. Sp. Sci. 30. 1107.Google Scholar
  17. Luhmann, J. G.: 1992,J. Geophys. Res. 97, 6103.Google Scholar
  18. Luhmann, J. G., Russell, C. T., Brace, L. H., Taylor, H. A. Jr., Knudsen, W. C. Colburn, D. S., Scarf, F. L., and Barnes, A.: 1982,J. Geophys. Res. 87, 9205.Google Scholar
  19. Luhmann, J. G., Elphic, R. C., Russell, C. T., Slavin, J. A., and Mihalov, J. D.: 1981,Geophys. Res. Lett. 8, 517.Google Scholar
  20. Luhmann, J. G. and Cravens, T. E.: 1991,Space Sci. Rev. 55, 201.Google Scholar
  21. Luhmann, J. G. and Russell, C. T.: 1992,J. Geophys. Res. 97, 10,267.Google Scholar
  22. Marubashi, K., Grebowsky, J. M., Taylor, H. A. Jr., Luhmann, J. G., Russell, C. T., and Barnes, A.: 1985,J. Geophys. Res. 90, 1385.Google Scholar
  23. Phillips, J. L., Stewart, A. I. F., and Luhmann, J. G.: 1986,Geophys. Res. Lett. 13, 1047.Google Scholar
  24. Russell, C. T.: 1991,Space Sci. Rev. 55, 317.Google Scholar
  25. Russell, C. T., von Dornum, M., and Scarf, F. L.: 1988,Nature 331, 591.Google Scholar
  26. Russell, C. T., von Dornum, M., and Scarf, F. L.: 1989,Icarus 80, 390Google Scholar
  27. Russell, C. T., Luhmann, J. G., Elphic, R.C., Scarf, F. L., and Brace, L. H.: 1982,Geophys. Res. Lett. 9, 45.Google Scholar
  28. Scarf, F. L., Fredericks, R. W., Russell, C. T., Kivelson, M,. Neugebauer, M, and. Chappell, C. R.: 1973,J. Geophys. Res. 78, 2150.Google Scholar
  29. Scarf, F. L., Neumann, S., Brace, L. H., Russell, C. T., Luhmann, J. G., and Stewart, A. I. F.: 1985,Adv. Space. Res. 5, 185.Google Scholar
  30. Scarf, F. L.: 1985,Adv. Space Res. 5, 31.Google Scholar
  31. Scarf, F. L.: 1986,J. Geophys. Res. 4, 594.Google Scholar
  32. Scarf, F. L.,: 1981,Adv. Space Res. 1, 247.Google Scholar
  33. Scarf, F. L. and Russell, C. T.: 1983,Geophys. Res Lett. 10, 1192.Google Scholar
  34. Scarf, F. L. and Russell, C. T.: 1988,Science 240, 222.Google Scholar
  35. Scarf, F. L., Jordan, K. F., and Russell, C. T.: 1987,J. Geophys. Res. 92, 12407.Google Scholar
  36. Scarf, F. L. and Russell, C. T.: 1988,Science 242, 222.Google Scholar
  37. Sonwalkar, V. S., Carpenter, D. L., and Strangeway, R. J.: 1991,J. Geophys. Res. 96, 17763.Google Scholar
  38. Spenner, K., Knudsen, W. C., Whitten, R. C., Michaelson, P. F., Miller, K. L., and Novak, V.: 1981,J. Geophys. Res. 86, 9170.Google Scholar
  39. Strangeway, R. J.: 1991,Space Sci. Rev. 275.Google Scholar
  40. Taylor, H. A., Jr.: 1987, NASA Document X-610-87-4.Google Scholar
  41. Taylor, H. A. Jr. and Walsh, W. J.: 1972,J. Geophys. Res. 77, 6716.Google Scholar
  42. Taylor, H. A. Jr., Grebowsky, J. M. and Cloutier, P. A.: 1985,J. Geophys. Res. 90, 7415.Google Scholar
  43. Taylor, H. A. Jr., and Cloutier, P. A.: 1986,Science 234, 1087.Google Scholar
  44. Taylor, H. A. Jr., and Cloutier, P. A.: 1991,Geophys. Res. Lett. 18, 753.Google Scholar
  45. Taylor, H. A. Jr., and Cloutier, P. A.: 1994,Earth, Moon and Planets,64, 201.Google Scholar
  46. Taylor, H. A. Jr., Cloutier, P. A., and Zheng, Z.: 1987,J. Geophys. Res. 92, 9907.Google Scholar
  47. Taylor, H. A. Jr. and Cloutier, P. A.: 1992,Space Sci. Rev. 61, 387.Google Scholar
  48. Taylor, H. A. Jr., Brinton, H. C., Bauer, S. J., Hartle, R. E., Cloutier, P. A., Daniell, R. E., Jr. and Donahue, T. M.: 1979,Science 205, 96.Google Scholar
  49. Taylor, H. A. Jr., Brinton, H. C., Bauer, S. J., Hartle, R. E., Cloutier, P. A., and Daniell, R. E.: 1980,J. Geophys. Res 85, 7765.Google Scholar
  50. Taylor, H. A. Jr., Brinton, H. C., Wagner, T.C. G., Blackwell, B. H., and Cordier, G. R.: 41980,IEEE Tran. Geosci. Remote Sensing GE-18, 44.Google Scholar
  51. Taylor, H. A. Jr., Hartle, R. E., Niemann, H. B., Brace, L. H., Daniell, R. E. Jr., Bauer, S. J., and Kliore, A. J.: 1982,Icarus 51, 285.Google Scholar
  52. Taylor, H. A. Jr., Daniell, R. E., Hartle, R. E., Brinton, H. C., Bauer, S. J. and Taylor, H. A. Jr.: 1987,The Planetary Report 7, 4.Google Scholar
  53. Walker, S.: 1992, Masters Thesis, Rice U. Houston, Tex.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Harry A. TaylorJr.
    • 1
  • Leonard Kramer
    • 2
  • Paul A. Cloutier
    • 2
  • Shannon S. Walker
    • 3
  1. 1.Taylor EnterprisesNova ScotiaCanada
  2. 2.Rice UniversityHoustonUSA
  3. 3.Rockwell Space Operations Co.HoustonUSA

Personalised recommendations