Skip to main content
Log in

The mechanical properties of nickel oxide and their relationship to the morphology of thick oxide scales formed on nickel

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The oxidation of metals that form P-type semiconducting oxide scales, such as NiO on nickel and CoO on cobalt, takes place by outward cation diffusion and inward vacancy diffusion. The large number of cation vacancies precipitate in the scale near the oxide-metal interface and may coalesce to form macroscopic pores, resulting in a transition from a dense, columnar scale to a duplex scale which contains an inner, fine-grained, equiaxed, porous layer. Increasing temperature and/or purity eliminate the transition, which has been found to depend upon oxide plasticity. The mechanical properties of bulk nickel oxides having a range of porosities have been studied in compression. Three regimes were observed: (1) brittle at low temperatures, (2) ductile at elevated temperatures, and (3) a transition region at intermediate temperatures. Fracture strength in the brittle region was strongly dependent on porosity due to the effect of pores on the elastic modulus and the size of fracture-initiating flaws. The plastic flow stress in the ductile region depended primarily on grain size and impurity content except for very porous materials in which porosity substantially reduced the plastic flow stress. The development of the duplex structure in scales during oxidation has been shown to depend upon inhibition of slip on the {110} 〈110〉 system in the highly textured grains rather than by diffusion-controlled processes such as creep. The duplex structure forms when the rate of deformation of the scale is less than the rate of void formation. Grain size, porosity, and impurities play an important role; all of these effects are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Kubaschewski and Von Goldbeck,Z. Metallk. 39, 158 (1948).

    Google Scholar 

  2. J. D. Sartell and C. H. Li,J. Inst. Met. 90, 92 (1961).

    Google Scholar 

  3. S. Mrowec,Corr. Sci. 7, 563 (1967).

    Google Scholar 

  4. G. C. Wood, I. G. Wright, and J. M. Ferguson,Corr. Sci. 5, 645 (1965).

    Google Scholar 

  5. D. L. Douglass,Corr. Sci. 8, 665 (1968).

    Google Scholar 

  6. G. C. Wood and I. G. Wright,Corr. Sci. 5, 841 (1965).

    Google Scholar 

  7. F. N. Rhines and J. S. Wold,Met. Trans. 1, 1701 (1970).

    Google Scholar 

  8. D. L. Douglass,Oxid. Metals 1, 127 (1969).

    Google Scholar 

  9. B. M. Vasyutinskiy and G. N. Kartmazov,Fiz. Metal. Metalloved,15, 132 (1963).

    Google Scholar 

  10. D. L. Douglass, ASM National Seminar Proceedings,Oxidation of Metals and Alloys (ASM, Metals Park, Ohio, 1971), p. 137.

    Google Scholar 

  11. A. Dravnicks and H. McDonald,J. Electrochem. Soc. 94, 139 (1948).

    Google Scholar 

  12. I. A. Menzies and K. N. Strafford,J. Mat. Sci. 2, 358 (1967).

    Google Scholar 

  13. I. A. Menzies and P. Aldred,Corr. Sci. 8, 525 (1968).

    Google Scholar 

  14. Y. Iida,J. Amer. Ceram. Soc. 41, 397 (1958).

    Google Scholar 

  15. Y. Iida and S. Ozakis,J. Amer. Ceram. Soc. 42, 219 (1959).

    Google Scholar 

  16. R. W. Davidge and A. G. Evans,Mater. Sci. Eng. 6, 281 (1970).

    Google Scholar 

  17. A. G. Evans, C. Roy and P. L. Pratt,Proc. Brit. Ceram. Soc. 6, 173 (1966).

    Google Scholar 

  18. J. P. Berry,J. Mech. Phys. Solids 8, 194 (1960).

    Google Scholar 

  19. S. R. Anthony, J. P. Chubb, and J. Congleton,Phil. Mag. 22, 1201 (1970).

    Google Scholar 

  20. W. F. Brown and J. E. Srawley, ASTM Special Technical Publication No. 410 (1967).

  21. A. G. Evans and G. Tappin,Proc. Brit. Ceram. Soc. 20 (in press).

  22. H. W. Babel and G. Sines,J. Basic Engr. 90, 285 (1968).

    Google Scholar 

  23. L. E. Simpson.J. Amer. Ceram. Soc. (to be published).

  24. G. W. Groves,Proc. Brit. Ceram. Soc. 15, 103 (1970).

    Google Scholar 

  25. G. W. Groves and A. Kelly,Phil. Mag. 8, 877 (1963).

    Google Scholar 

  26. A. G. Evans,Proc. Brit. Ceram. Soc. 15, 113 (1970).

    Google Scholar 

  27. D. McLean,Mechanical Properties of Metals (Wiley, New York, 1962).

    Google Scholar 

  28. J. P. Hirth and J. Luthe,Theory of Dislocations (McGraw-Hill, New York, 1968).

    Google Scholar 

  29. T. G. Langdon and J. A. Pask,Mat. Sci. Res. 5, 283 (1971).

    Google Scholar 

  30. A. G. Evans and R. W. Davidge,J. Nuclear Mat. 33, 249 (1969).

    Google Scholar 

  31. A. S. Tetelman and A. J. McEvily,Fracture in Structural Materials (Wiley, New York, 1967).

    Google Scholar 

  32. E. M. Passmore, R. M. Spriggs, and T. Vasilos,J. Amer. Ceram. Soc. 48, 1 (1965).

    Google Scholar 

  33. R. F. Cannon, J. T. A. Roberts, and R. J. Beals,J. Amer. Ceram. Soc. 54, 105 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research sponsored by the Office of Naval Research, Mathematics and Information Sciences Division, under Contract ONR N00014-69-A-0200-4021, NR-048-239.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, A.G., Rajdev, D. & Douglass, D.L. The mechanical properties of nickel oxide and their relationship to the morphology of thick oxide scales formed on nickel. Oxid Met 4, 151–170 (1972). https://doi.org/10.1007/BF00613090

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00613090

Keywords

Navigation