Advertisement

Earth, Moon, and Planets

, Volume 71, Issue 3, pp 225–233 | Cite as

Encounter frequency of Halley-like comets with the planets

  • E. Lohinger
  • R. Dvorak
  • C. Froeschlé
Article
  • 11 Downloads

Abstract

We present the results of a numerical study on encounter frequencies of fictitious Halley-like comets with the planets in a dynamical model of the solar system, in which we take into account the gravitational forces of the Sun and the planets Venus through Neptune. The change of the orbital elements during a close approach with a planet was carefully monitored with the aid of a thoroughly tested numerical integration method with automatic step size control. We computed the encounter frequencies of the comets' orbits using two different “spheres of influence” and compared the results. In both cases, it turned out that the encounter frequency of the fictitious Halley-like comets with Jupiter and Saturn is about a factor 10 to 100 higher than for the other planets. Concerning the changes of the semi-major axes and inclinations our results show that an increase and decrease of these elements is equally probable after an encounter.

Keywords

Solar System Integration Method Gravitational Force Orbital Element Close Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bailey M.E., Stagg, C.R.: 1990,Icarus 86, 2–8.Google Scholar
  2. Callendreau, O.: 1892,Ann. Obs. Paris Mem. 20, B 1.Google Scholar
  3. Carusi, A., Perozzi, E., Pittich, E.M., Valsecchi, G.B.: 1985, inDynamics of Comets: Their Origin and Evolution, IAU Coll.83, pp. 227–235.Google Scholar
  4. Chirikov B.V., Vecheslavov V.V.: 1986,Astron. Astrophys. 221, 146–154.Google Scholar
  5. Cox, L.P., Lewis, S.J., Lecar, M.: 1978,Icarus 34, 415–427.Google Scholar
  6. Duncan, M., Quinn, T., Tremaine, S.: 1988,Astrophys. J. Lett. 328, L69-L73.Google Scholar
  7. Everhart, E.: 1972,Astrophys. Letters 10, 131–135.Google Scholar
  8. Everhart, E.: 1973,Astron. J. 78, 329–337.Google Scholar
  9. Fernández, J.A., Ip, W.-H.: 1991, inComets in the Post-Halley Era, R.L. Newburn, Jr., M. Neugebauer, J. Rahe (eds.), Vol I, pp. 487–535Google Scholar
  10. Froeschlé, C., Gonczi, R.: 1988,Celest. Mech. 43, 325–330.Google Scholar
  11. Hanslmeier, A., Dvorak, R.: 1984,Astron. Astrophys. 132, 203–207.Google Scholar
  12. Newton, H.A.: 1893,Mem. Nat. Acad. Sci. Washington 6, p. 7.Google Scholar
  13. Olsson-Steel, D.: 1987a,Icarus 69, 51–69.Google Scholar
  14. Olsson-Steel, D.: 1987b,Astron. Astrophys. 187, 909–912.Google Scholar
  15. Öpik, E.J.: 1951,Proc. R. Irish Acad. 54, 165–199.Google Scholar
  16. Öpik, E.J.: 1976,Interplanetary Encounters, Elsevier, Amsterdam, New York.Google Scholar
  17. Rickman, H., Froeschlé, C.: 1979,Astron. J. 84, 1910–1917.Google Scholar
  18. Rickman, H., Froeschlé, C.: 1983,Moon & Planets 28, 69–86.Google Scholar
  19. Rickman, H., Malmort, A.M.: 1981,Astron. Astrophys. 102, 165–170.Google Scholar
  20. Schulhof, L.: 1891,Bull. Astron. 8, pp. 147, 191, 225.Google Scholar
  21. Stumpff, K.: 1965,Himmelsmechanik, Band II, VEB, Berlin, p. 64.Google Scholar
  22. Tisserand, F.: 1889,Bull. Astron. 6, pp. 241, 289.Google Scholar
  23. Weidenschilling, S.J.: 1975,Astron. J. 80, 145–153.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • E. Lohinger
    • 1
  • R. Dvorak
    • 1
  • C. Froeschlé
    • 2
  1. 1.Institut für AstronomieUniversität WienViennaAustria
  2. 2.O.C.A. Observatoire de NiceNice, Cedex 4France

Personalised recommendations