Advertisement

Earth, Moon, and Planets

, Volume 71, Issue 1–2, pp 99–145 | Cite as

Constraints on the resurfacing history of Venus from the hypsometry and distribution of volcanism, tectonism, and impact craters

  • Maribeth Price
  • John Suppe
Article

Abstract

Improved measurements of the target elevations of 885 impact craters on Venus indicate that they are nearly random with respect to elevation. Although a slight deficit of craters at high elevations and an excess at low elevations is observed, the differences are marginally significant. Using a high-resolution digital map and database of all major volcanic, tectonic and impact features, we examine the distribution of impacts within volcanic and tectonic features, and the distribution of volcanism and tectonism with elevation. We show that the observed crater hypsometry results from resurfacing at higher elevations by volcanic and tectonic features superimposed on less active plains.

The distribution of impacts in the map units has two distinct patterns: (1) the plains and shield fields (70%) have high crater densities and low proportions of tectonized or embayed craters; and (2) the remaining volcanic and tectonic features (30%) have low crater densities and high proportions of modified craters. The plains and shield fields appear to represent a much lower level of resurfacing activity. Simple area-balance calculations indicate that resurfacing at higher elevations by tectonic and volcanic features plausibly explains the observed crater hypsometry. However, the subtlety of the effects suggests that either (1) little resurfacing has occurred during the period of crater accumulation, or (2) resurfacing acts almost equally at all elevations. The apparent low activity of the plains and their abundance at lower elevations makes it unlikely that resurfacing is balanced with respect to elevation. It appears that the plains have been mostly quiescent since their emplacement, and that subsequent resurfacing occurs mostly in the highlands as a result of volcanism, corona formation, and rifting. We estimate that since the end of plains emplacement about 14% of Venus has been resurfaced by volcanism and about 6% by tectonic deformation.

Keywords

High Elevation Impact Crater Improve Measurement Tectonic Feature Tectonic Deformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arkani-Hamed, J. and N. Toksoz: 1984, ‘Thermal Evolution of Venus’,Phys. Earth and Planet. Inter. 34, 232–250.Google Scholar
  2. Arvidson, R. E., V. R. Baker, C. Elachi, R. S. Saunders and J. A. Wood: 1991, ‘Magellan: Initial Analysis of Venus Surface Modification’,Science 252, 270–276.Google Scholar
  3. Arvidson, R. E., R. Greeley, M.C. Malin, R. S. Saunders, N. Izenberg, J. J. Plaut, E. R. Stofan and M. K. Shepard: 1992, ‘Surface Modification of Venus as Inferred from Magellan Observations of Plains’,J. Geophys. Res. 97, 13,303–13,318.Google Scholar
  4. Aubele, J. C. and E. N. Slyuta: 1990, ‘Small Domes on Venus: Characteristics and Origin’,Earth Moon Planets 50/51, 493–532.Google Scholar
  5. Barsukov, V. L.et al.: 1986, ‘The Geology and Geomorphology of the Venus Surface as Revealed by the Radar Images Obtained by Veneras 15 and 16’,J. Geophys. Res. 91, 378–398.Google Scholar
  6. Basilevsky, A. T.: 1993, ‘Age of Rifting and Associated Volcanism in Atla Regio, Venus’,Geophys. Res. Lett. 20, 883–886.Google Scholar
  7. Basilevsky, A. T. and J. W. Head: 1994, ‘Preliminary Stratigraphic Basis for Geologic Mapping of Venus’,Lunar Planet. Sci. Conf. 25, 65–66.Google Scholar
  8. Basilevsky, A. T., A. A. Pronin, L. B. Ronca, V. P. Kryuchkov, A. L. Sukhanov and M. S. Markov:1986, ‘Styles of Tectonic Deformation on Venus: Analysis of Venera 15 and Venera 16 Data’,Proc. Lunar Planet. Sci. Conf. 16,91, D399-D411.Google Scholar
  9. Bilotti, F., C. Connors and J. Suppe: 1993, ‘Global Distribution of Wrinkle Ridges on Venus: Relationship to Long-wavelength Topography and Gravity’,Eos 74, 191.Google Scholar
  10. Bilotti, F., C. Connors and J. Suppe: 1993, ‘Global Organization of Tectonic Deformation on Venus’,Lunar Planet. Sci. XXIV, 107–108.Google Scholar
  11. Bilotti, F. and J. Suppe, 1992: ‘Planetary Distribution and Nature of Compressional Deformation Around Artemis Corona, Venus’,Proc. Lunar Planet. Sci. Conf. 23,XXIII, 101–102.Google Scholar
  12. Bilotti, F. and J. Suppe: 1992, ‘Wrinkle Ridges and Topography on Venus’,GSA Abstracts with Programs 24, A195.Google Scholar
  13. Bilotti, F. and J. Suppe: 1994 ‘Determining Ages of Wrinkle Ridge Deformation on Venus Using the Relative Dating of Craters and Faults’,GSA Abstracts with Programs 26, A-264.Google Scholar
  14. Bindschadler, D. and E. M. Parmentier: 1990, ‘Mantle Flow Tectonics: The Influence of a Ductile Lower Crust and Implications for the Formation of Topographic Uplands on Venus’,J. Geophys. Res. 95, 21,329–21,344.Google Scholar
  15. Bindschadler, D., G. Schubert and W. Kaula: 1992a, ‘Coldspots and Hotspots: Global Tectonics and Mantle Dynamics of Venus’,J. Geophys. Res. 97, 13,495–13,532.Google Scholar
  16. Bindschadler, D. L., A. deCharon, K. K. Beratan, S. E. Smrekar and J. W. Head: 1992b, ‘Magellan Observations of Alpha Regio: Implications for Formation of Complex Ridged Terrains on Venus’,J. Geophys. Res. 97, 13,563–13,579.Google Scholar
  17. Bindschadler, D. L. and J. W. Head: 1989, ‘Characterization of Venera 15/16 Geologic Units from Pioneer Venus Reflectivity and Roughness Data’,Icarus 77, 3–20.Google Scholar
  18. Bindschadler, D. L. and J. W. Head: 1991, ‘Tessera Terrain, Venus: Characterization and Models for Origin and Evolution’,J. Geophys. Res. 96, 5889–5907Google Scholar
  19. Bullock, M. A., D. H. Grinspoon and J. W. Head: 1993, ‘Venus Resurfacing Rates: Constraints Provided by 3-D Monte Carlo Simulations’,Geophys. Res. Lett. 20, 2147–2150.Google Scholar
  20. Campbell, D. B., J. W. Head, J. K. Harmon and A. A. Hine: 1984, ‘Venus: Volcanism and Rift Formation in Beta Regio’,Science 226, 167–170.Google Scholar
  21. Campbell, D. B., J. W. Head, A. A. Hine, J. K. Harmon, D. A. Senske and P. C. Fisher: 1989, ‘Styles of Volcanism on Venus: New Arecibo High Resolution Radar Data’,Science 246, 373–377.Google Scholar
  22. Coburn, P. M.: 1993, ‘Rifting on Venus: Observations from Stereo Imagery and Implications between Simple Rifts, Volcanic Rises, and Coronae on Venus’, [B.A. thesis]: Princeton University.Google Scholar
  23. Crater Analysis Techniques Working Group: 1979, ‘Standard Techniques for Presentation and Analysis of Crater Size-Frequency Data’,Icarus 37, 467–474.Google Scholar
  24. Crumpler, L. S., J. W. Head and J. C. Aubele: 1993, ‘Relation of Major Volcanic Center Concentration on Venus to Global Tectonic Patterns’,Science 261, 591–595.Google Scholar
  25. Davis, J. C.: 1986,Statistics and Data Analysis in Geology, John Wiley & Sons, Inc, New York.Google Scholar
  26. Diggle, P. J.: 1983,Statistical Analysis of Spatial Point Patterns, Academic, San Diego, CA.Google Scholar
  27. Fisher, N. I., T. Lewis and B. J. J. Embleton: 1987,Statistical Analysis of Spherical Data, Cambridge University Press, Cambridge, UK, 329 pp.Google Scholar
  28. Garvin, J. B. and R. S. Williams: 1990, ‘Small Domes on Venus: Probably Analogs of Icelandic Lava Shields’,Geophys. Res. Lett. 17, 1381–1384.Google Scholar
  29. Golombek, M. P., J. B. Plescia and B. J. Franklin: 1991, ‘Faulting and Folding in the Formation of Planetary Wrinkle Ridges’,Lunar Planet. Sci. Conf. 21, 679–693.Google Scholar
  30. Head, J. W., D. B. Campbell, C. Elachi, J. E. Guest, D. P. McKenzie, R. S. Saunders, G. G. Schaber and G. Schubert: 1991, ‘Venus Volcanism: Initial Analysis from Magellan Data’,Science 252, 276–288.Google Scholar
  31. Head, J, W., L. S. Crumpler, J. C. Aubele, J. E. Guest and R. S. Saunders: 1992, ‘Venus Volcanism: Classification of Volcanic Features and Structures, Associations, and Global Distribution from Magellan Data’,J. Geophys. Res. 97, 13,153–13,197.Google Scholar
  32. Herrick, R. and R. Phillips: 1990, ‘Blob Tectonics: A Prediction for Western Aphrodite Terra, Venus’,Geophys. Res. Lett. 17, 2129–2132.Google Scholar
  33. Herrick, R. R.: 1994, ‘Resurfacing History of Venus’,Geology 22, 703–706.Google Scholar
  34. Herrick, R. R. and R. J. Phillips: 1994, ‘Implications of a Global Survey of Venusian Impact Craters’,Icarus 111, 387–416.Google Scholar
  35. Ivanov, M. A. and A. T. Basilevsky: 1993, ‘Density and Morphology and Impact Craters on Tessera Terrain, Venus’,Geophys. Res. Lett. 20, 2579–2582.Google Scholar
  36. Ivanov, M. A. and J. W. Head: 1993, ‘Tessera Terrain on Venus: Global Characterization from Magellan Data’,Lunar Planet. Sci. XXIV, 691–692.Google Scholar
  37. Ivanov, M. A., T. Tormanen and J. W. Head: 1992, ‘Global Distribution of Tesserae: Analysis of Magellan Data’,Lunar Planet. Sci. XXIII, 581–582.Google Scholar
  38. Janes, D. M., S. W. Squyres, D. L. Bindschadler, G. Baer, G. Schubert, V. L. Sharpton and E. R. Stofan: 1992, ‘Geophysical Models for the Formation and Evolution of Coronae on Venus’,J. Geophys. Res. 97, 16,055–16,069.Google Scholar
  39. Kozak, R. C. and G. G. Schaber: 1989, ‘New Evidence for Global Tectonic Zones on Venus’,Geophys. Res. Lett. 16, 175–178.Google Scholar
  40. Mackwell, S. J., M. E. Zimmerman, D. L. Kohlstedt and D. S. Scherber: 1994, ‘Dry Deformation of Diabase: Implications for Tectonics on Venus’,Lunar Planet. Sci. Conf. 25, 817–818.Google Scholar
  41. Malin, M. C., R. E. Grimm and R. R. Herrick: 1993, ‘Tectonic Resurfacing of Venus’,Lunar Planet. Sci. Conf. 24, 927–928.Google Scholar
  42. Malin, M. C. and R. S. Saunders: 1977, ‘Surface of Venus: Evidence of Diverse Landforms from Radar Observations’,Science 196, 987–990.Google Scholar
  43. Maxwell, T. A., F. El-Baz and S. H. Ward: 1975, ‘Distribution, Morphology, and Origin of Ridges and Arches in Mare Serenitatis’,Geol. Soc. Am. Bull. 86, 1273–1278.Google Scholar
  44. McGill, G. E., S. J. Steenstrup, C. Barton and P. G. Ford: 1981, ‘Continental Rifting and the Origin of Beta Regio, Venus’,Geophys. Res. Lett. 8, 737–740.Google Scholar
  45. McKenzie, D., R. G. Ford, C. Johnson, B. Parsons, D. Sandwell, S. Saunders and S. C. Solomon: 1992, ‘Features on Venus Generated by Plate Boundary Processes’,J. Geophys. Res. 97, 13,533–13,544.Google Scholar
  46. Namiki, N. and S. C. Solomon: 1994, ‘Impact Crater Densities on Volcanoes and Coronae on Venus: Implications for Volcanic Resurfacing’,Science 265, 929–933.Google Scholar
  47. Nishikin, N. M.: 1990, ‘Rift Structures in the Northern Areas of Venus’,Moscow University Bulletin,45, 19–30.Google Scholar
  48. Parmentier, E. M. and P. C. Hess: 1992, ‘Chemical Differentiation of a Convecting Planetary Interior: Consequences for a One Plate Planet Such as Venus’,Geophys. Res. Lett. 19, 2015–2018.Google Scholar
  49. Phillips, R.: 1981, ‘Tectonics and Evolution of Venus’,Science 212, 879–887.Google Scholar
  50. Phillips, R. J., R. E. Grimm, and M. C. Malin: 1991, ‘Hot-Spot Evolution and the Global Tectonics of Venus’,Science 252, 651–658.Google Scholar
  51. Phillips, R. J., R. F. Raubertas, R. E. Arvidson, I. C. Sarkar, R. R. Herrick, N. Izenberg, and R. E. Grimm: 1992, ‘Impact Craters and Venus Resurfacing History’,J. Geophys. Res. 97, 15,923–15,948.Google Scholar
  52. Price, M.: 1995, ‘Resurfacing History of the Venusian Plains Based on the Distribution of Impact Craters’,Lunar. Planet. Sci. Conf. XXVI, 1143–1144.Google Scholar
  53. Price, M. and J. Suppe: 1994, ‘Mean Age of Rifting and Volcanism on Venus Deduced from Impact Crater Densities’,Nature 372, 756–759.Google Scholar
  54. Pronin, A. A. and E. R. Stofan: 1990, ‘Coronae on Venus: Morphology, Classification and Distribution’,Icarus 87, 452–474.Google Scholar
  55. Sandwell, D. T. and G. Schubert: 1992, ‘Flexural Ridges, Trenches, and Outer Rises Around Coronae on Venus’,J. Geophys. Res. 97, 16,069–16,083.Google Scholar
  56. Schaber, G. G. and H. Masursky: 1980, ‘Ridge and Trench Systems of Venus and Global Rift Valleys of Earth’, in H. E. Holt and E. C. Kosters (eds.),Reports of Planetary Geology Program, 1980,NASA Technical Memorandum TM-8235, pp. 82–84.Google Scholar
  57. Schaber, G. G., R. G. Strom, H. J. Moore, L. A. Soderblum, R. L. Kirk, D. J. Chadwick, D. D.Dawson, L. R. Gaddis, J. M. Boyce, and J. Russell: 1992, ‘Geology and Distribution of Impact Craters on Venus: What are They Telling Us?’,J. Geophys. Res. 97, 13,257–13,301.Google Scholar
  58. Schubert, G., D. Bercovici, and G. A. Glatzmaier: 1990, ‘Mantle Dynamics in Mars and Venus: Influence of anImmobile Lithosphere on Three-Dimensional Mangle Convection’,J. Geophys. Res. 95, 14,105–14,129.Google Scholar
  59. Schubert, G., D. Bercovici, P. Thomas, and D. Campbell: 1989, ‘Venus Coronae: Formation by Mantle Plumes’,Lunar Planet. Sci. XX, 968–970.Google Scholar
  60. Solomon, S. C.: 1993, ‘Geophysics of Venus’,Physics Today 46, 48–55.Google Scholar
  61. Solomon, S. C., J. W. Head, W. M. Kaula, D. McKenzie, B. Parsons, R. J. Phillips, G. Schubert, and M. Talwani: 1991, ‘Venus Tectonics: Initial Analysis from Magellan’,Science 252, 297–313.Google Scholar
  62. Solomon, S. C., S. E. Smerkar, D. L. Bindschadler, R. E. Grimm, W. M. Kaula, G. E. McGill, R. J. Phillips, R. S. Sanders, G. S. Schubert, S. W. Squyres, and E. R. Stofan: 1992, ‘Venus Tectonics: An Oveview of Magellan Observations’,J. Geophys. Res. 97, 13,199–13,256.Google Scholar
  63. Squyres, S. W., D. M. Janes, G. Baer, D. L. Bindschadler, G. Schubert, V. L. Sharpton, and E. R. Stofan: 1992, ‘The Morphology and Evolution of Coronae on Venus’,J. Geophys. Res. 97, 13,611–13,634.Google Scholar
  64. Steinbach, V. and D. A. Yuen: 1992, ‘The Effects of Multiple Phase Transitions on Venusian Mantle Convection’,Geophys. Res. Lett. 19, 2243.Google Scholar
  65. Stofan, E. R., D. L. Bindschadler, J. W. Head, and E. M. Parmentier: 1991, ‘Coronae on Venus: Models of Origin’,J. Geophys. Res. 96, 20,933–20,946.Google Scholar
  66. Stofan, E. R. and J. W. Head: 1990, ‘Coronae of Mnemosyne Regio, Venus: Morphology and Origin’,Icarus 83, 216–243.Google Scholar
  67. Stofan, E. R., J. W. Head, D. B. Campbell, S. H. Zisk, A. F. Bogomolov, O. N. Rzhiga, A. T. Basilevsky, and N. Armand: 1989, ‘Geology of a Rift Zone on Venus: Beta Regio and Devana Chasma’,Geolog. Soc. Am. Bull. 101, 143–156.Google Scholar
  68. Stofan, E. R., V. L. Sharpton, G. S. Schubert, G. Baer, D. L. Bindschadler, D. M. Janes, and S.W. Squyres: 1992, ‘Global Distribution and Characteristics of Coronae and Related Features on Venus: Implications for Origin and Relation to Mantle Processes’,J. Geophys. Res. 97, 13,347–13,378.Google Scholar
  69. Strom, R. G.: 1972, ‘Lunar Mare Ridges, Rings and Volcanic Ring complexes’,Mod. Geo. 2, 133–157.Google Scholar
  70. Strom, R. G., G. G. Schaber, and D. D. Dawson: 1994, ‘The Global Resurfacing of Venus’,J. Geophys. Res. 99, 10,899–10,926.Google Scholar
  71. Sukhanov, A. L.: 1986, ‘Parquet: Regions of Areal Plastic Dislocations’,Geotectonics 20, 294–305.Google Scholar
  72. Sukhanov, A. L.: 1992, ‘Tesserae’, in V. L. B.et. al., Venus Geology, Geochemistry, and Geophysics, The University of Arizona Press, pp. 82–95.Google Scholar
  73. Suppe, J. and C. Connors: 1992, ‘Critical Taper Wedge Mechanics of Fold-and-Thrust Belts on Venus: Initial Results from Magellan’,J. Geophys. Res. 97, 13,545–13,562.Google Scholar
  74. Turcotte, D. L.: 1994, ‘An Episodic Hypothesis for Venusian Tectonics’,J. Geophys. Res. 98, 17,061–17,068.Google Scholar
  75. Watters, T. R.: 1988, ‘Wrinkle Ridge Assemblages on the Terrestrial Planets’,J. Geophys. Res. 93, 10,236–10,254.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Maribeth Price
    • 1
  • John Suppe
    • 1
  1. 1.Department of Geological and Geophysical SciencesPrinceton UniversityPrincetonUSA

Personalised recommendations