Skip to main content
Log in

Visual steering under closed-loop conditions by flying locusts: flexibility of optomotor response and mechanisms of correctional steering

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Summary

  1. 1.

    Tethered locusts,Locusta migratoria, flying in a laminar air flow react to motion of the visual world with compensatory steering.

  2. 2.

    Vertical gratings surrounding the animal and rotating around the yaw axis elicit an optomotor yaw response. At the low light level used, gratings of spatial periods (λ) below 10° or of contrast frequency (CF) above 15 Hz are less effective.

  3. 3.

    In a flight simulator which converts torque into angular velocity of the vertical grating, the locust can control the motion of its visual surroundings. When the negative feedback loop is closed, locusts stabilize a vertical grating by modulation of their yaw torque. This indicates that the correctional steering behaviour described under open loop conditions is functionally relevant.

  4. 4.

    Under the same conditions, the optomotor reactions lead to the stabilization of a single vertical stripe in the frontal visual area (fixation).

  5. 5.

    With positive feedback (i.e. the pattern turns in the same direction as the torque), no corresponding inversion of steering is observed, and stabilization around the yaw axis fails.

  6. 6.

    Under similar negative feedback conditions, locusts stabilize the position of the visual horizon around the roll axis by modulating their roll torque. Positive feedback leads, however, to the stabilization of the horizon in the inverted position (reverse albedo).

  7. 7.

    The results suggest the existence of two steering strategies, one based on the parameters of visual movement and the other on position in the visual field and relative luminance. The use of these strategies is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CF :

contrast frequency

fb −:

negative feedback

fb+:

positive feedback

λ :

spatial period

w :

angular velocity

DN :

descending neurone

References

  • Arbas EA (1986) Control of hindlimb posture by wind-sensitive hairs and antennae during locust flight. J Comp Physiol A 159:849–857

    Google Scholar 

  • Baker PS (1979) The wing movements of flying locusts during steering behaviour. J Comp Physiol 131:49–58

    Google Scholar 

  • Baker PS, Cooler RJ (1979) The natural flight of the migratory locust,Locusta migratoria L. J Comp Physiol 131:79–87

    Google Scholar 

  • Camhi JM (1970) Yaw-correcting postural changes in locusts. J Exp Biol 52:519–531

    Google Scholar 

  • Cooler RJ (1979) Visually induced yaw movements in the flying locustSchistocera gregaria (Forsk). J Comp Physiol 131:67–78

    Google Scholar 

  • Dugard JJ (1967) Directional change in flying locusts. J Insect Physiol 13:1055–1063

    Google Scholar 

  • Forman R, Brumbley D (1980) An improved capacitive position transducer for biological systems. J Exp Biol 88:399–402

    Google Scholar 

  • Gewecke M, Philippen J (1978) Control of the horizontal flight-course by air-current sense organs inLocusta migratoria. Physiol Entomol 3:43–52

    Google Scholar 

  • Götz KG (1984) Optomotorische Untersuchungen des visuellen Systems einiger Augenmutanten der FruchtfliegeDrosophila. Kybernetik 2:77–92

    Google Scholar 

  • Götz KG (1975) The optomotor equilibrium of theDrosophila navigation system. J Comp Physiol 99:187–210

    Google Scholar 

  • Götz KG (1983) Genetik und Ontogenie des Verhaltens: Genetischer Abbau der visuellen Orientierung beiDrosophila. Verh Dtsch Zool Ges 76:83–99

    Google Scholar 

  • Götz KG (1987) Course-control, metabolism and wing interference during ultralong tethered flight inDrosophila melanogaster. J Exp Biol 128:35–46

    Google Scholar 

  • Goodman LJ (1965) The role of certain optomotor reactions in regulating stability in the rolling plane during flight in the desert locust,Schistocerca gregaria. J Exp Biol 42:385–407

    Google Scholar 

  • Heisenberg M, Wolf R (1979) On the fine structure of yaw torque in visual flight orientation ofDrosophila melanogaster. J Comp Physiol 130:113–130

    Google Scholar 

  • Heisenberg M, Wolf R (1984) Vision inDrosophila. Genetics of microbehavior. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Hengstenberg R, Sandeman DC, Hengstenberg B (1986) Compensatory head roll in the blowflyCalliphora during flight. Proc R Soc Lond B 227:455–482

    Google Scholar 

  • Hensler K (1987) Flight steering in locusts: parallel encoding of deviations from straight flight and head movements in the same deviation detector neuron and its functional significance. In: Elsner N, Creutzfeld O (eds) New frontiers in brain research: Proc 15. Göttingen Neurobiol Conf. Thieme, Stuttgart, p 51

    Google Scholar 

  • Kunze P (1961) Untersuchung des Bewegungssehens fixiert fliegender Bienen. Z Vergl Physiol 44:656–684

    Google Scholar 

  • Möhl B (1988) Short-term learning during flight control inLocusta migratoria. J Comp Physiol A 163:803–812

    Google Scholar 

  • Pick B, Buchner E (1979) Visual movement detection under light and dark-adaptation in the fly,Musca domestica. J Comp Physiol 134:45–54

    Google Scholar 

  • Reichardt W, Poggio T (1976) Visual control of orientation behaviour in the fly. Part 1. Q Rev Biophys 9:311–375

    Google Scholar 

  • Reichardt W, Wenking H (1969) Optical detection and fixation of objects by fixed flying flies. Naturwissenschaften 56:424–425

    Google Scholar 

  • Reichert H, Rowell CHF (1985) Integration of non-phase-locked exteroceptive information in the control of rhythmic flight in the locust. J Neurophysiol 53:1216–1233

    Google Scholar 

  • Reichert H, Rowell CHF, Griss C (1985) Course correction circuitry translates feature detection into behavioural action in locusts. Nature 315:142–144

    Google Scholar 

  • Rowell CHF (1988) Mechanisms of flight steering in locusts. In: Camhi J (ed) Neuroethology: a multiauthor review. Experientia 44:389–395

    Google Scholar 

  • Rowell CHF, Reichert H (1986) Three descending interneurons reporting deviation from course in the locust. II. Physiology. J Comp Physiol A 158:775–794

    Google Scholar 

  • Rowell CHF, O'Shea M, Williams JLD (1977) The neuronal basis of a sensory analyser, the acridid movement detector system. IV. The preference for small field stimuli. J Exp Biol 68:157–185

    Google Scholar 

  • Schmidt J, Zarnack W (1987) The motor pattern of locusts during visually induced rolling in long-term flight. Biol Cybern 56:397–410

    Google Scholar 

  • Taylor CP (1981) Contribution of compound eyes and ocelli to steering of locusts in flight. I. Behavioural analysis. J Exp Biol 93:1–18

    Google Scholar 

  • Thorson J (1966) Small-signal analysis of a visual reflex in the locust. I: Input parameters. Kybernetik 3:41–53

    Google Scholar 

  • Thüring DA (1986) Variability of the motor output during flight steering in locusts. J Comp Physiol A 156:655–664

    Google Scholar 

  • Wagner H (1986) Flight performance and visual control of flight of the free-flying housefly (Musca domestica). I: Organization of the flight motor. Phil Trans R Soc Lond B 312:527–551

    Google Scholar 

  • Wilson DM (1968) Inherent asymmetry and reflex modulation of the locust flight motor pattern. J Exp Biol 48:631–641

    Google Scholar 

  • Wilson M (1978) The functional organization of the locust ocelli. J Comp Physiol 124:297–316

    Google Scholar 

  • Wolf R, Heisenberg M (1986) Visual orientation in motion-blind flies is an operant behaviour. Nature 323:154–156

    Google Scholar 

  • Zaretsky M (1982) Quantitative measurements of centrally and retinally generated saccadic suppression in a locust movement detector neurone. J Exp Biol 328:521–533

    Google Scholar 

  • Zarnack W, Möhl B (1977) Activity of the direct downstroke flight muscles ofLocusta migratoria (L.) during steering behaviour in flight. I. Patterns of time shift. J Comp Physiol 118:215–233

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robert, D. Visual steering under closed-loop conditions by flying locusts: flexibility of optomotor response and mechanisms of correctional steering. J. Comp. Physiol. 164, 15–24 (1988). https://doi.org/10.1007/BF00612713

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00612713

Keywords

Navigation