Journal of comparative physiology

, Volume 96, Issue 3, pp 257–272 | Cite as

Proprioceptive indentation of the campaniform sensilla of cockroach legs

  • S. M. Spinola
  • K. M. Chapman
Article

Summary

  1. 1.

    Individual proprioceptive campaniform sensilla of tibial Group 6 in the cockroachBlaberus discoidalis were stimulated by combinations of proprioceptive and punctate stimuli.

     
  2. 2.

    Punctate stimulation during a proprioceptive discharge increased the response rather than decreasing it, indicating that proprioceptive stimuli indent, rather than bulge, the cap of the sensillum.

     
  3. 3.

    The magnitude of the indentation associated with a strong proprioceptive discharge was estimated from compliance and sensitivity measurements to be in the range 10 to 50 nanometers.

     
  4. 4.

    The excitatory strain of the tibial cuticle appears to be compression perpendicular to the long axis of the cap of the sensillum. We suggest that the elaborate structure of the cap cuticle serves to amplify the tibial cuticular strain to squeeze the terminal of the dendritic sensory process.

     

Keywords

Sensitivity Measurement Sensory Process Campaniform Sensilla Elaborate Structure Proprioceptive Stimulus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Autrum, H., Schneider, W.: Vergleichende Untersuchungen über den Erschütterungssinn der Insekten. Z. vergl. Physiol.31, 77–88 (1948)Google Scholar
  2. Barth, F. G.: Die Physiologie der Spaltsinnesorgane. II. Funktionelle Morphologie eines Mechanoreceptors. J. comp. Physiol.81, 159–186 (1972)Google Scholar
  3. Barth, F. G., Libera, W.: Ein Atlas der Spaltsinnesorgane vonCupiennius salei Keys. Chelicerata (Araneae). Z. Morph. Tiere68, 343–369 (1970)Google Scholar
  4. Chapman, K. M.: Campaniform sensilla on the tactile spines of the legs of the cockroach. J. exp. Biol.42, 191–203 (1965)Google Scholar
  5. Chapman, K. M., Duckrow, R. B., Moran, D. T.: Form and role of deformation in excitation of an insect mechanoreceptor. Nature (Lond.)244, 453–454 (1973)Google Scholar
  6. Chapman, K. M., Nichols, T. R.: Electrophysiological demonstration that cockroach tibial tactile spines have separate sensory axons. J. Insect Physiol.15, 2103–2115 (1969)Google Scholar
  7. Chapman, K. M., Pankhurst, J. H.: Conduction velocities and their temperature coefficients in sensory nerve fibres of cockroach legs. J. exp. Biol.46, 63–84 (1967)Google Scholar
  8. Chapman, K. M., Smith, R. S.: A linear transfer function underlying impulse frequency modulation in a cockroach mechanoreceptor. Nature (Lond.)197, 699–701 (1963)Google Scholar
  9. Chevalier, R. L.: The fine structure of campaniform sensilla on the halteres ofDrosophila melanogaster. J. Morph.128, 443–464 (1969)Google Scholar
  10. Crowe, A.: Studies on the transfer function of a cockroach mechanoreceptor. Comp. Biochem. Physiol.20, 13–25 (1967)Google Scholar
  11. Delcomyn, F.: Computer aided analysis of a locomotor leg reflex in the cockroachPeriplaneta americana. Z. vergl. Physiol.74, 427–445 (1971)Google Scholar
  12. Ewing, A. W., Manning, A.: Some aspects of the efferent control of walking in three cockroach species. J. Insect Physiol.12, 1115–1118 (1966)Google Scholar
  13. Finlayson, L. H.: Proprioceptors in the invertebrates. Symp. Zool. Soc. Lond.23, 217–249 (1968)Google Scholar
  14. French, A. S., Holden, A. V., Stein, R. B.: The estimation of the frequency response function of a mechanoreceptor. Kybernetik11, 15–23 (1972)Google Scholar
  15. Howse, P. E.: An investigation into the mode of action of the subgenual organ in the termite,Zootermopsis angusticollis Emerson, and in the cockroach,Periplaneta americana L. J. Insect Physiol.10, 409–424 (1964)Google Scholar
  16. Howse, P. E.: The fine structure and functional organisation of chordotonal organs. Symp. Zool. Soc. Lond.23, 167–198 (1968)Google Scholar
  17. Johnstone, B. M., Sellick, P. M.: The peripheral auditory apparatus. Quart. Rev. Biophys.5, 1–57 (1972)Google Scholar
  18. Knight, B. W.: Dynamics of encoding in a population of neurons. J. gen. Physiol.59, 734–766 (1972)Google Scholar
  19. Liesenfeld, F. J.: über Leistung und Sitz des Erschütterungssinnes von Netzspinnen. Biol. Zbl.80, 465–475 (1961)Google Scholar
  20. Mann, D. W.: The receptor potential and impulse initiation in cockroach mechanoreceptors. Ph.D. Thesis, Providence: Brown Univ. 1973Google Scholar
  21. Mann, D. W., Chapman, K. M.: Trans-cuticular recording of receptor potentials in cockroach mechanoreceptors. Fed. Proc.30, 552 Abs. (1971)Google Scholar
  22. Mann, D. W., Chapman, K. M.: Dual sensory encoding in a single mechanoreceptive bipolar neuron. Fed. Proc.32, 328 Abs. (1973)Google Scholar
  23. Moran, D. T., Chapman, K. M.: Proprioceptive campaniform sensilla of cockroach tibia: morphological and electrophysiological investigations of large bipolar mechanoreceptor neurons. J. Cell Biol.39, 95A (1968)Google Scholar
  24. Moran, D. T., Chapman, K. M., Ellis, R. A.: The fine structure of cockroach campaniform sensilla. J. Cell Biol.48, 155–173 (1971)Google Scholar
  25. Moran, D. T., Rowley, J. C., III: High voltage and scanning electron microscopy of the site of stimulus reception of an insect mechanoreceptor. J. Ultrastruct. Res., in pressGoogle Scholar
  26. Pearson, K. G.: Central programming and reflex control of walking in the cockroach. J. exp. Biol.56, 173–194 (1972)Google Scholar
  27. Pearson, K. G., Iles, J. F.: Nervous mechanisms underlying intersegmental co-ordination of leg movements during walking in the cockroach. J. exp. Biol.58, 725–744 (1973)Google Scholar
  28. Pearson, K. G., Stein, R. B., Malhotra, S. K.: Properties of action potentials from insect motor nerve fibres. J. exp. Biol.53, 299–316 (1970)Google Scholar
  29. Pringle, J. W. S.: Proprioception in insects. II. The action of the campaniform sensilla on the legs. J. exp. Biol.15, 114–131 (1938)Google Scholar
  30. Pringle, J. W. S.: The reflex mechanism of the insect leg. J. exp. Biol.17, 8–17 (1940)Google Scholar
  31. Pringle, J. W. S.: Proprioeeption in arthropods. In: The cell and the organism, p. 256–282 (J. A. Ramsay and V. B. Wigglesworth, eds.). London: Cambridge Univ. Press 1961Google Scholar
  32. Pringle, J. W. S., Wilson, V. J.: The response of a sense organ to a harmonic stimulus. J. exp. Biol.29, 220–234 (1952)Google Scholar
  33. Rice, M. J., Galun, R., Finlayson, L. H.: Mechanotransduction in insect neurons. Nature (Lond.) New Biol.241, 286–288 (1973)Google Scholar
  34. Schnorbus, H.: Die subgenualen Sinnesorgane vonPeriplaneta americana: Histologie und Vibrationsschwellen. Z. vergl. Physiol.71, 14–48 (1971)Google Scholar
  35. Smith, D. S.: The fine structure of the haltere sensilla in the blowfly,Calliphora erythrocephala (Meig.), with scanning microscopic observations on the haltere surface. Tissue & Cell1, 443–484 (1969)Google Scholar
  36. Thorson, J., Biedermann-Thorson, M.: Distributed relaxation processes in sensory adaptation. Science183, 161–172 (1974)Google Scholar
  37. Thurm, U.: Das Rezeptorpotential einzelner mechanorezeptorischer Zellen von Bienen. Z. vergl. Physiol.48, 131–156 (1964)Google Scholar
  38. Thurm, U.: An insect mechanoreceptor. I. Fine structure and adequate stimulus. Cold Spr. Harb. Symp. quant. Biol.30, 75–82 (1965)Google Scholar
  39. Thurm, U.: Steps in the transducer process of mechanoreceptors. Symp. Zool. Soc. Lond.23, 199–216 (1968)Google Scholar
  40. Thurm, U.: Untersuchungen zur funktionellen Organisation sensorischer Zellverbände. Verh. dtsch. zool. Ges.64, 79–88 (1970)Google Scholar
  41. Thurm, U.: The generation of receptor potentials in epithelial receptors. In: Olfaction and taste., IV, p. 95–101 (D. Schneider, ed.). Stuttgart: Wissensch. Verlagsges. mbH. 1972Google Scholar
  42. Walcott, C., Kloot, W.C. van der: The physiology of the spider vibration receptor. J. exp. Zool.141, 191–244 (1959)Google Scholar
  43. Wilson, D. M.: Proprioceptive leg reflexes in cockroaches. J. exp. Biol.43, 397–410 (1965)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • S. M. Spinola
    • 1
  • K. M. Chapman
    • 1
  1. 1.Neurosciences Section, Division of Biological and Medical SciencesBrown UniversityProvidenceUSA

Personalised recommendations