Journal of Comparative Physiology A

, Volume 162, Issue 4, pp 511–524 | Cite as

Identification of the teleost Edinger-Westphal nucleus by retrograde horseradish peroxidase labeling and by electrophysiological criteria

  • John C. Wathey
Article

Summary

A homolog of the Edinger-Westphal nucleus of other vertebrates is described in two species of serranid basses of the genusParalabrax, a group possessing a wide range of ocular accommodation but lacking a pupillary reflex to light. The nucleus was found by retrograde labeling from the ciliary ganglion and lies dorsolateral to the ipsilateral oculomotor nucleus. The nucleus consists of 60 to 100 neurons with an average soma diameter of about 20 Μm in animals weighing 70 to 150 g. Electrophysiological experiments support the identification. Microstimulation of the nucleus evokes contraction of the ipsilateral lens retractor muscle and slight constriction of the caudal ipsilateral iris. Multi- and single-unit recordings in the nucleus reveal spontaneous firing (about 30 spikes/s in single units), the rate of which decreases during visually-evoked lens retractor relaxations (accommodation to near stimuli). Recordings of muscle fiber activity in the lens retractor show essentially the same behavior, which suggests that the ciliary ganglion and neuromuscular junctions simply relay impulses with little if any synaptic integration. The existence of a discrete Edinger-Westphal nucleus devoted largely to accommodation makesParalabrax a good model system for the further tracing of central accommodation control pathways.

Keywords

Retrograde Label Retractor Muscle Good Model System Oculomotor Nucleus Ciliary Ganglion 

Abbreviations

CNS

central nervous system

EW

Edinger-Westphal nucleus

HRP

horseradish peroxidase

WGA

wheat germ agglutinin

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abercrombie M (1946) Estimation of nuclear population from microtome sections. Anat Rec 94:239–247Google Scholar
  2. Abrahams VC, Hilton SM, Zbronzyna A (1960) Active muscle vasodilatation produced by stimulation of the brain stem: Its significance in the defence reaction. J Physiol (Lond) 154:491–513Google Scholar
  3. Akert K, Glicksman MA, Lang W, Grob P, Huber A (1980) The Edinger-Westphal nucleus in the monkey. A retrograde tracer study. Brain Res 184:491–498Google Scholar
  4. Ariens Kappers CU, Huber GC, Crosby EC (1936) The comparative anatomy of the nervous system of vertebrates, including man. Hafner, New YorkGoogle Scholar
  5. Bando T, Tsukuda K, Yamamoto N, Maeda J, Tsukahara N (1984a) Physiological identification of midbrain neurons related to lens accommodation in cats. J Neurophysiol 52:870–878Google Scholar
  6. Bando T, Yamamoto N, Tsukahara N (1984b) Cortical neurons related to lens accommodation in posterior lateral suprasylvian area in cats. J Neurophysiol 52:879–891Google Scholar
  7. Beer T (1894) Die Accommodation des Fischauges. Pflügers Arch 58:523–650Google Scholar
  8. Bonvallet M, Bobo EG (1970) Controle de l'accommodation oculaire par l'amygdale et par les corps striés. Electroencephalogr Clin Neurophysiol 29:461–472Google Scholar
  9. Bonnvallet M, Voloschin L (1969) Niveaux d'activation et variations des décharges toniques de deux systèmes de fibres parasympathiques oculaires. Electroencephalogr Clin Neurophysiol 26:296–309Google Scholar
  10. Brandis F (1895) Idem. III. Der Ursprung des N. trigeminus und der Augenmuskelnerven. Arch Mikr Anat 44:534–555Google Scholar
  11. Brouwer B (1918) Klinisch-anatomische Untersuchungen über den Oculomotoriuskern. Z Gesamte Neurol Psychiat 40:152–193Google Scholar
  12. Burde RM, Loewy AD (1980) Central origins of oculomotor parasympathetic neurons in the monkey. Brain Res 198:434–439Google Scholar
  13. Burde RM, Parelman JJ, Luskin M (1982) Lack of unity of Edinger Westpahl nucleus projections to the ciliary ganglion and spinal cord: a double labeling approach. Brain Res 249:379–382Google Scholar
  14. Cabot JB, Reiner A, Bogan N (1982) Avian bulbospinal pathways: anterograde and retrograde studies of cells of origin, funicular trajectories and laminar terminations. Prog Brain Res 57:79–108Google Scholar
  15. Carlton SM, Chung JM, Leonard RB, Willis WD (1985) Funicular trajectories of brainstem neurons projecting to the lumbar spinal cord in the monkey (Macaca fascicularis): a retrograde labeling study. J Comp Neurol 241:382–404Google Scholar
  16. Castiglioni AJ, Gallaway MC, Coulter JD (1978) Spinal projections from the midbrain in monkey. J Comp Neurol 178:329–346Google Scholar
  17. Chin NB, Ishikawa S, Lappin H, Davidowitz J, Breinin GM (1968) Accommodation in monkeys induced by midbrain stimulation. Invest Ophthalmol Visual Sci 7:386–396Google Scholar
  18. Clark WE LeGros (1926) The mammalian oculomotor nucleus. J Anat (Lond) 60:426–448Google Scholar
  19. Clarke RJ, Coimbra CJP, Alessio ML (1985) Distribution of parasympathetic motoneurons in the oculomotor complex innervating the ciliary ganglion in the marmosetCallithrix jacchus. Acta Anat 121:53–58Google Scholar
  20. Cowan WM, Wenger E (1968) Degeneration in the nucleus of the preganglionic fibers to the chick ciliary ganglion following early removal of the optic vesicle. J Exp Zool 168:105–123Google Scholar
  21. Demski LS (1984) Behavioral effects of electrical stimulation of the brain. In: Davis RE, Northcutt RG (eds) Fish neurobiology, vol 2. University of Michigan Press, Ann Arbor, pp 317–359Google Scholar
  22. Demski LS, Bauer DH (1975) Eye movements evoked by electrical stimulation of the brain in anesthetized fishes. Brain Behav Evol 11:109–129Google Scholar
  23. Donkelaar HJ ten, Nieuwenhuys R (1979) The brain stem. In: Gans C (ed) Biology of the Reptilia, vol 10. Academic Press, London, pp 133–200Google Scholar
  24. Donkelaar HJ ten, Kusuma A, Boer-van Huizen R de (1980) Cells of origin of pathways descending to the spinal cord in some quadrupedal reptiles. J Comp Neurol 192:827–852Google Scholar
  25. Dowben R, Rose J (1953) A metal-filled microelectrode. Science 118:22–24Google Scholar
  26. Dryer SE, Chiappinelli VA (1985) Properties of choroid and ciliary neurons in the avian ciliary ganglion and evidence for substance P as a neurotransmitter. J Neurosci 5:2654–2661Google Scholar
  27. Edinger L (1885) über den Verlauf der centralen Hirnnervenbahnen mit Demonstrationen von PrÄparaten. Arch Psychiat Nervenkr 16:858–859Google Scholar
  28. Erichsen JT, Karten HJ, Eldred WD, Brecha NC (1982a) Localization of substance P-like and enkephalin-like immunoreactivity within preganglionic terminals of the avian ciliary ganglion: light and electron microscopy. J Neurosci 2:994–1003Google Scholar
  29. Erichsen JT, Reiner A, Karten HJ (1982b) Co-occurrence of substance P-like and leu-enkephalin-like immunoreactivites in neurones and fibres of avian nervous system. Nature 295:407–410Google Scholar
  30. Fernald RD, Wright SE (1985) Growth of the visual system in the African cichlid fish,Haplochromis burtoni. Accommodation. Vision Res 25:163–170Google Scholar
  31. Gamlin PDR, Reiner A, Erichsen JT, Karten HJ, Cohen DH (1984) The neural substrate for the pupillary light reflex in the pigeon (Columba livia). J Comp Neurol 226:523–543Google Scholar
  32. Hanker JS, Yates PE, Metz CB, Rustioni A (1977) A new specific, sensitive and non-carcinogenic reagent for the demonstration of horseradish peroxidase. Histochem J 9:789–792Google Scholar
  33. Heine L (1907) über die VerhÄltnisse der Refraktion, Akkommodation und des Augenbinnendruckes in der Tierreihe. Med Naturwiss Arch 1:323–344Google Scholar
  34. Helmholtz H von (1909) Handbuch der Physiologischen Optik I. Voss, Hamburg. English translation: Southall JPC (1962) Physiological optics, vol I. Dover, New YorkGoogle Scholar
  35. Henley JM, Lindstrom JM, Oswald RE (1986) Acetylcholine receptor synthesis in retina and transport to optic tectum in goldfish. Science 232:1627–1629Google Scholar
  36. Herrick CJ (1917) The internal structure of the midbrain and thalamus ofNecturns. J Comp Neurol 28:215–348Google Scholar
  37. Hosoba M, Bando T, Tsukahara N (1978) The cerebellar control of accommodation of the eye in the cat. Brain Res 153:495–505Google Scholar
  38. Hultborn H, Mori K, Tsukahara N (1978) Cerebellar influence of parasympathetic neurones innervating intra-ocular muscles. Brain Res 159:269–278Google Scholar
  39. Innis RB, Aghajanian GK (1986) Cholecystokinin-containing and nociceptive neurons in rat Edinger-Westphal nucleus. Brain Res 363:230–238Google Scholar
  40. Inoue T (1980) Efferent discharge patterns in the ciliary nerve of rabbits and the pupillary light reflex. Brain Res 186:43–53Google Scholar
  41. Jampel RS (1960) Convergence, divergence, pupillary reactions and accommodation of the eye from faradic stimulation of the macaque brain. J Comp Neurol 115:371–399Google Scholar
  42. Jampel RS, Mindel J (1967) The nucleus for accommodation in the midbrain of the macaque. Invest Ophthalmol Visual Sci 6:40–50Google Scholar
  43. Johnson DA, Purves D (1981) Post-natal reduction of neural unit size in the rabbit ciliary ganglion. J Physiol (Lond) 318:143–159Google Scholar
  44. Johnson DA, Purves D (1983) Tonic and reflex synaptic activity recorded in ciliary ganglion cells of anaesthetized rabbits. J Physiol (Lond) 339:599–613Google Scholar
  45. Keller AD (1946) The striking inherent tonus of the deafferenated central pupilloconstrictor neurons. Fed Proc 5:55Google Scholar
  46. Konigsmark BW (1970) Methods for the counting of neurons. In: Nauta W, Ebbesson S (eds) Contemporary research methods in neuroanatomy. Springer, New York, pp 315–340Google Scholar
  47. Kuchnow KP (1971) The elasmobranch pupillary response. Vision Res 11:1395–1406Google Scholar
  48. Kuypers HGJM, Maisky VA (1975) Retrograde axonal transport of HRP from spinal cord to brain stem cell groups in the cat. Neurosci Lett 1:9–14Google Scholar
  49. Kuypers HGJM, Maisky VA (1977) Funicular trajectories of descending brain stem pathways in cat. Brain Res 136:159–165Google Scholar
  50. Leibowitz HW, Owens DA (1978) New evidence for the intermediate position of relaxed accommodation. Doc Ophthalmol 46:133–147Google Scholar
  51. Leong SK, Shieh JY, Wong WC (1984) Localizing spinal-cord-projecting neurons in adult albino rats. J Comp Neurol 228:1–17Google Scholar
  52. Loewy AD, Araujo JC, Kerr FWL (1973) Pupillodilator pathways in the brainstem of the cat: anatomical and electrophysiological identification of a central autonomic pathway. Brain Res 60:65–91Google Scholar
  53. Loewy AD, Saper CB (1978) Edinger-Westphal nucleus: Projections to the brain stem and spinal cord in the cat. Brain Res 150:1–27Google Scholar
  54. Loewy AD, Saper CB, Yamodis ND (1978) Re-evaluation of the efferent projections of the Edinger-Westphal nucleus in the cat. Brain Res 141:153–159Google Scholar
  55. Luiten PGM, Dijkstra-de Vlieger HP (1978) Extraocular muscle representation in the brainstem of the carp. J Comp Neurol 179:669–676Google Scholar
  56. Lyman D, Mugnaini E (1980) The avian accessory oculomotor nucleus. Soc Neurosci Abstr 6:479Google Scholar
  57. Maciewicz R, Phipps BS, Foote WE, Aronin N, Difiglia M (1983) Distribution of substance-P containing neurons in the cat Edinger-Westphal nucleus: Relationship to efferent projection systems. Brain Res 270:217–230Google Scholar
  58. Maciewicz R, Phipps BS, Grenier J, Poletti CE (1984) Edinger-Westphal nucleus cholecystokinin immunocytochemistry and projections to spinal cord and trigeminal nucleus in the cat. Brain Res 299:139–145Google Scholar
  59. Magnuson DJ, Rezak M, Benevento LA (1980) Some afferent connections to the oculomotor complex in the macaque monkey. Soc Neurosci Abstr 6:478Google Scholar
  60. Martin AR, Pilar G (1963a) Dual mode of synaptic transmission in the avian ciliary ganglion. J Physiol (Lond) 168:443–463Google Scholar
  61. Masland RH, Mills JW, Cassidy C (1984) The functions of acetylcholine in the rabbit retina. Proc R Soc Lond B 223:121–139Google Scholar
  62. Meader RG (1936) Accommodation and its reflex pathways in the teleosts. Yale J Biol Med 8:511–522Google Scholar
  63. Melnitchenko LV, Skok VI (1970) Natural electrical activity in mammalian parasympathetic ganglion neurones. Brain Res 23:277–279Google Scholar
  64. Merrill EG, Ainsworth A (1972) Glass-coated platinum-plated tungsten microelectrodes. Med Biol Eng 10:662–672Google Scholar
  65. Mesulam M-M (1978) Tetramethyl benzidine for horseradish peroxidase neurohistochemistry: a non-carcinogenic blue reaction-product with superior sensitivity for visualizing neural afferents and efferents. J Histochem Cytochem 26:106–117Google Scholar
  66. Narayanan CH, Narayanan Y (1976) An experimental inquiry into the central source of preganglionic fibers to the chick ciliary ganglion. J Comp Neurol 166:101–110Google Scholar
  67. Nisida I, Okada H (1960) The activity of the pupilloconstrictory centers. Jpn J Physiol 10:64–72Google Scholar
  68. Norris HW (1925) Observations upon the peripheral distribution of the cranial nerves of certain ganoid fishes (Amia, Lepidosteus, Polydon, Scaphirhynchus andAcipenser). J Comp Neurol 39:345–432Google Scholar
  69. Northcutt RG (1986) Strategies of comparison: How do we study brain evolution? Verh Dtsch Zool Ges 79:91–104Google Scholar
  70. Phipps BS, Maciewicz R, Sandrew BB, Poletti CE, Foote WE (1983) Edinger-Westphal neurons that project to spinal cord contain substance P. Neurosci Lett 36:125–131Google Scholar
  71. Pilar GR (1984) Autonomic systems of the eye. In: Dyck PJ, Thomas PK, Lambert EH, Bunge R (eds) Peripheral neuropathy, vol 1. WB Saunders, Philadelphia, pp 231–247Google Scholar
  72. Pitts DG (1967) Accommodation from electrical stimulation. Arch Am Acad Optom 44:769–775Google Scholar
  73. Reiner A, Karten HJ, Gamlin PDR, Erichsen JT (1983) Parasympathetic ocular control. Functional subdivisions and circuitry of the avian nucleus of Edinger-Westphal. Trends Neurosci 6:140–145Google Scholar
  74. Saper CB, Loewy AD, Swanson LW, Cowan WM (1976) Direct hypothalamo-autonomic connections. Brain Res 117:305–312Google Scholar
  75. Scherer SS (1986) Reinnervation of the extraocular muscles in goldfish is nonselective. J Neurosci 6:764–773Google Scholar
  76. Schwassmann HO (1968) Visual projection upon the optic tectum in foveate marine teleosts. Vision Res 8:1337–1348Google Scholar
  77. Schwassmann HO, Meyer DL (1971) Refractive state and accommodation in the eye of three species ofParalabrax (Serranidae, Pisces). Vidensk Medd Dansk Naturh Foren 134:103–108Google Scholar
  78. Sekiya H, Kawamura K, Ishikawa I (1984) Projections from the Edinger-Westphal complex of monkeys as studied by retrograde axonal transport of horseradish peroxidase. Arch Ital Biol 122:311–320Google Scholar
  79. Senn DG (1972) Development of tegmental and rhombencephalic structures in a frog (Rana temporaria L.). Acta Anat 82:525–548Google Scholar
  80. Sillito AM, Zbronzyna AW (1970a) The localization of pupilloconstrictor function within the midbrain of the cat. J Physiol (Lond) 211:461–477Google Scholar
  81. Sillito AM, Zbronzyna AW (1970b) The activity characteristics of the preganglionic pupilloconstrictor neurones. J Physiol (Lond) 211:767–779Google Scholar
  82. Sivak JG (1973) Interrelation of feeding behavior and accommodative lens movements in some species of North American freshwater fishes. J Fish Res Board Can 30:1141–1146Google Scholar
  83. Sivak JG (1976) The accommodative significance of the ‘ramp’ retina of the eye of the stingray. Vision Res 16:945–950Google Scholar
  84. Sivak JG (1979) Accommodative lens movements and pupil shape in teleost fishes. Israel J Zool 28:218–223Google Scholar
  85. Sivak JG (1982) Optical characteristics of the eye of the flounder. J Comp Physiol 146:345–349Google Scholar
  86. Sivak JG, Gilbert PW (1976) Refractive and histological study of accommodation in two species of sharks (Ginglymostoma cirratum andCarcharhinus milberti). Can J Zool 54:1811–1817Google Scholar
  87. Sivak JG, Howland HC (1973) Accommodation in the northern rock bass (Ambloplites rupestris rupestris) in response to natural stimuli. Vision Res 13:2059–2064Google Scholar
  88. Sivak JG, Woo GCS (1975) Accommodative lens movement in holosteans (Amia calva andLepisosteus osseus oxyurus) and in the sea lamprey (Petromyzon marinus). Can J Zool 53:516–520Google Scholar
  89. Skirboll LR, Hökfelt T, Rehfeld J, Cuello AC, Dockray G (1982) Coexistence of substance P and cholecystokinin-like immunoreactivity in neurons of the mesencephalic periaqueductal central gray. Neurosci Lett 28:35–39Google Scholar
  90. Smeets WJAJ, Nieuwenhuys R (1976) Topological analysis of the brain stem of the sharksSqualus acanthias andScyliorhinus canicula. J Comp Neurol 165:333–368Google Scholar
  91. Smith KJ, Schauf CL (1981) Gallamine triethiodide (Flaxedil): Tetraethylammonium- and pancuronium-like effects in myelinated nerve fibers. Science 212:1170–1172Google Scholar
  92. Stammer A (1969) Comparative investigations on the ciliary ganglion of fresh-water fishes. Acta Biol Szeged 15:101–109Google Scholar
  93. Sugimoto T, Itoh K, Mizuno N (1977) Localization of neurons giving rise to the oculomotor parasympathetic outflow: a HRP study in cats. Neurosci Lett 7:301–305Google Scholar
  94. Sugimoto T, Itoh K, Mizuno N (1978) Direct projections from the Edinger-Westphal nucleus to the cerebellum and spinal cord in the cat: an HRP study. Neurosci Lett 9:17–22Google Scholar
  95. Takada M, Itoh K, Yasui Y, Mitani A, Nomura S, Mizuno N (1984) Distribution of premotor neurons for orbicularis oculi motoneurons in the cat, with particular reference to possible pathways for blink reflex. Neurosci Lett 50:251–256Google Scholar
  96. Tamura T (1957) A study of visual perception in fish, especially on resolving power and accommodation. Bull Jpn Soc Sci Fish 22:536–557Google Scholar
  97. Toyoshima K, Kawana E, Sakai H (1980) On the neuronal origin of the afferents to the ciliary ganglion in cat. Brain Res 185:67–76Google Scholar
  98. Walls GL (1942) The vertebrate eye and its adaptive radiation. Hafner, New YorkGoogle Scholar
  99. Warwick R (1954) The ocular parasympathetic nerve supply and its mesencephalic sources. J Anat (Lond) 88:71–93Google Scholar
  100. Wathey JC (1987) Neural pathways controlling ocular accommodation in foveate teleost fishes of the genusParalabrax. PhD thesis, University of California, San DiegoGoogle Scholar
  101. Wathey JC (in press) Accommodation motor neurons in the foveate teleostParalabrax clathratus: horseradish peroxidase labeling and axonal morphometry, with comparisons to other ciliary nerve components. Brain Behav EvolGoogle Scholar
  102. West JR, Deadwyler SA, Cotman CW, Lynch G (1975) A dual marking technique for microelectrode tracks and localization of recording sites. Electroencephalogr Clin Neurophysiol 39:407–410Google Scholar
  103. Westphal C (1887) über einen Fall von chronischer progressiver LÄhmung der Augenmuskeln (Ophthalmoplegia externa) nebst Beschreibung von Ganglienzellengruppen im Bereiche des Oculomotoriuskerns. Arch Psychiat Nervenkr 18:846–871Google Scholar
  104. Wolf GA (1941) The ratio of preganglionic neurons to postganglionic neurons in the visceral nervous system. J Comp Neurol 75:235–243Google Scholar
  105. Young JZ (1931) On the autonomic nervous system of the teleostean fish,Uranoscopus scaber. Q J Microsc Sci 74:491–535Google Scholar
  106. Young JZ (1933) Comparative studies on the physiology of the iris. I. Selachians. Proc R Soc Lond B 112:228–241Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • John C. Wathey
    • 1
  1. 1.Department of NeurosciencesUniversity of CaliforniaSan Diego, La JollaUSA

Personalised recommendations