Skip to main content
Log in

Limits of application for Wagner's oxidation theory

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The main quantitative results from Wagner's oxidation theory are recalled while the conditions of application of that theory are reviewed from the point of view of oxidation kinetics like those of chromium, zinc, and iron. Bibliographical results on cobalt and copper oxidation and on cobaltous and cuprous oxides are quantitatively compared to Wagner's theory. In the same, the validity of the cation self-diffusion coefficient determination by the parabolic constant is considered. Finally, the modification of a rate equation to take a surface reaction into account is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

D :

Ion self-diffusion coefficient

D o :

Ion self-diffusion coefficient at unit oxygen pressure

E :

Activation energy

N v :

Vacancy concentration

N t :

Number of cation sites per unit volume

X :

Scale thickness at timet

a o :

Oxygen activity inside the scale

C eq :

Concentration of oxide equivalent as defined by Wagner

k :

Oxidation parabolic constant as defined by Eq. (1)

k r :

Oxidation rational constant as defined by Wagner

n :

Coefficient used to describe any variable as a function of\(p_{{\text{O}}_{\text{2}} }^{{{\text{1}} \mathord{\left/ {\vphantom {{\text{1}} n}} \right. \kern-\nulldelimiterspace} n}} \)

n D :

Diffusion coefficient dependency on\(p_{{\text{O}}_{\text{2}} } \)

n x :

Nonstoichiometry dependency on\(p_{{\text{O}}_{\text{2}} } \)

n k :

Parabolic constant dependency on\(p_{{\text{O}}_{\text{2}} } \)

n σ :

Electrical conductivity dependency on\(p_{{\text{O}}_{\text{2}} } \)

\(p_{{\text{O}}_{\text{2}} } \) :

Oxygen pressure at equilibrium

t :

Time

Z :

Cation or anion average valency in the oxide

x :

Degree of nonstoichiometry as defined by M1−xO or M2−xO

σ :

Electrical conductivity

v i :

Stoichiometric coefficient

μ i :

Chemical potential of chemical species i

1:

Subscript used for cation

2:

Subscript used for anion

′:

Superscript used for the metal-oxide interface

″:

Superscript used for the oxide-gas interface

□:

Ion vacancy

References

  1. C. Wagner,Z. Physik Chem. B21, 25 (1933).

    Google Scholar 

  2. C. Wagner,Z. Physik. Chem. B32, 447 (1936).

    Google Scholar 

  3. C. Wagner and K. Grunewald,Z. Physik. Chem. B40, 455 (1938).

    Google Scholar 

  4. R. E. Carter and F. D. Richardson,J. Metals 7, 336 (1955).

    Google Scholar 

  5. O. Kubachewski and B. E. Hopkins,Oxidation of Metals and Alloys, 2nd ed. (Butterworths, London, 1962), p. 222.

    Google Scholar 

  6. J. Benard,l'Oxydation des Métaux, Vol. II (Gauthier et Villars, Paris, 1964).

    Google Scholar 

  7. H. J. Grabke, K. J. Best, and A. Gala,Werkstoffe und Korrosion 21, 911 (1970).

    Google Scholar 

  8. L. Himmel, R. F. Mehl, and G. E. Birchenall,J. Metals 5, 827 (1953).

    Google Scholar 

  9. C. Wagner,Atom Movements (A.S.M., Cleveland, 1951), p. 153.

    Google Scholar 

  10. P. Kofstad,High Temperature Oxidation of Metals (John Wiley and Sons, New York, 1966), p. 125.

    Google Scholar 

  11. B. Fisher and D. S. Tannhauser,J. Electrochem. Soc. 111, 1194 (1964).

    Google Scholar 

  12. C. Wagner and H. Hammen,Z. Physik. Chem. B40, 197 (1938).

    Google Scholar 

  13. M. O'Keffe and W. J. Moore,J. Chem. Phys. 35, 1324 (1961).

    Google Scholar 

  14. J. Gundermann, K. Hauffe, and C. Wagner,Z. Physik. Chem. B37, 148 (1937).

    Google Scholar 

  15. R. S. Troth, R. Kilkson, and D. Trivich,Phys. Rev. 122, 482 (1961).

    Google Scholar 

  16. M. O'Keffe and W. J. Moore,J. Chem. Phys. 36, 3009 (1962).

    Google Scholar 

  17. J. K. Lee and W. J. Moore, as cited in ref. 21.

    Google Scholar 

  18. J. P. Baur, D. W. Bridges, and W. M. Fassell,J. Electrochem. Soc. 103, 273 (1956).

    Google Scholar 

  19. S. Mrowec and A. Stoklosa,Oxidation of Metals 3, 292 (1971).

    Google Scholar 

  20. S. Mrowec and A. Stoklosa,Werkstoffe und Korrosion 21, 934 (1970).

    Google Scholar 

  21. W. J. Moore and B. Selikson,J. Chem. Phys. 19, 1539 (1951);20, 927 (1952).

    Google Scholar 

  22. J. Gundermann and C. Wagner,Z. Physik. Chem. B37, 155 (1937).

    Google Scholar 

  23. K. Fueki and J. B. Wagner,J. Electrochem. Soc. 112, 384 (1965).

    Google Scholar 

  24. S. Mrowec, T. Walec, and T. Werber,Corrosion Sci. 6, 287 (1966).

    Google Scholar 

  25. W. B. Jepson,J. Electrochem. Soc. 107, 53 (1960).

    Google Scholar 

  26. D. W. Bridges, J. Baur, and W. Fassel,J. Electrochem. Soc. 103, 614 (1956).

    Google Scholar 

  27. N. F. Mott and R. W. Gurney,Electronic Processes in Ionic Crystals, 2nd ed. (Clarendon Press, London, 1948), p. 257.

    Google Scholar 

  28. F. Morin and M. Rigaud,Can. Met. Quart. 9, 521 (1970).

    Google Scholar 

  29. W. K. Chen, N. L. Peterson, and W. T. Reeves,Phys. Rev. 186, 887 (1969).

    Google Scholar 

  30. N. G. Eror and J. B. Wagner,J. Phys. Chem. Solids 29, 1597 (1968).

    Google Scholar 

  31. D. W. Bridges and W. M. Fassell,Oxidation of Metals 1, 279 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morin, F., Beranger, G. & Lacombe, P. Limits of application for Wagner's oxidation theory. Oxid Met 4, 51–62 (1972). https://doi.org/10.1007/BF00612507

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00612507

Keywords

Navigation