Journal of Applied Electrochemistry

, Volume 13, Issue 2, pp 221–233 | Cite as

The role of sintering time on reversibility of Ni(s)—NiO(s) electrodes for high temperature solid oxide electrolyte galvanic cells

  • D. Gozzi
  • P. L. Cignini


The reversibility of solid electrolyte galvanic cells such as
$${\text{Mo/Ni(s)}}--{\text{NiO(s)/CSZ/Fe(s)}}--{\text{Fe}}_{{\text{1}}--\delta } {\text{O(s)/Mo}}$$
has been studied with respect to the sintering time of the active powders. Pellets from short (7h) and long (14h) sintering times have been prepared and assembled to give the above cells. Each of them has been thermally cycled and only the cells containing Ni(s)-NiO(s) electrodes prepared with a long sintering time give emf versus T curves which are independent of cycle. These values are in close agreement with the literature. For the cell reaction
$${\text{NiO(s)}} + (1 - \delta ){\text{Fe(s) = Ni(s)}} + {\text{Fe}}_{1 - \delta } {\text{O(s)}}$$
the free energy change
$$\Delta G = - (27.85 \pm 0.06) - (0.02157 \pm 0.00004)T{\text{ kJ mol}}^{ - {\text{1}}} $$
has been found in the temperature range 977–1350 K.

To check the electrochemical reversibility, cyclic voltammetry has also been used. On the basis of these results and of SEM analysis of the electrode pellets, a mechanism is proposed whereby only at long sintering time would a triple phase contact at the electrode/electrolyte interface be produced.


Oxide Physical Chemistry Free Energy Cyclic Voltammetry Close Agreement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    K. Kiukkola and C. Wagner,J. Electrochem. Soc. 104 (1957) 379.Google Scholar
  2. [2]
    C. B. Alcock (ed.), ‘Electromotive Force Measurements in High-temperature Systems’, The Institute of Mining and Metallurgy, London (1968).Google Scholar
  3. [3]
    R. A. Rapp and D. A. Shores in, ‘Physicochemical Measurements in Metal Research’, Part 2, Vol. 4, (edited by R. A. Rapp) Interscience, New York, (1970) Ch. 6.Google Scholar
  4. [4]
    J. Hladik (ed.), ‘Physics of Electrolytes’, Vol. 2, Academic Press, London, (1972).Google Scholar
  5. [5]
    S. N. Flengas,High Temp. High Pressures 5 (1973) 551.Google Scholar
  6. [6]
    H. Schmalzried and A. D. Pelton,Annu. Rev. of Mater. Sci. 2 (1972) 143.Google Scholar
  7. [7]
    T. A. Ramanarayanan and W. L. Worrel,Can. Met. Q. 13 (1974) 325.Google Scholar
  8. [8]
    R. J. Fruehan, K. J. Martonik and E. T. Turkdogan,Trans. AIME 245 (1969) 1501.Google Scholar
  9. [9]
    H. W. den Hartog and B. Slangen,Ironmaking and Steelmaking 2 (1976) 64.Google Scholar
  10. [10]
    M. Iwase and T. Mori,Trans. ISIJ 19 (1979) 126.Google Scholar
  11. [11]
    D. Gozzi, P. L. Cignini, E. Stampa, B. Alfonsi and M. Petrucci,ibid. 23 (1983).Google Scholar
  12. [12]
    J. W. Patterson,J. Electrochem. Soc. 118 (1971) 1033.Google Scholar
  13. [13]
    B. C. H. Steele in ‘Electromotive Force Measurement in High Temperature Systems’ (edited by C. B. Alcock) The Institute of Mining and Metallurgy. London (1968).Google Scholar
  14. [14]
    H. Rickert, ‘.Google Scholar
  15. [15]
    J. W. Patterson, E. C. Bogren and R. A. Rapp,J. Electrochem. Soc. 114 (1967) 752.Google Scholar
  16. [16]
    F. J. Salzano, H. S. Isaacs and B. Minushkin,ibid. 118 (1971) 412.Google Scholar
  17. [17]
    R. A. Rapp and F. Maak,Acta Metall. 10 (1962) 63.Google Scholar
  18. [18]
    C. Diaz and F. D. Richardson,Trans. Instn. Min. Metall. 76C (1967) 196.Google Scholar
  19. [19]
    D. Gozzi, P. L. Cignini and E. Stampa,Electrochim. Acta, in press.Google Scholar
  20. [20]
    O. Kubaschewski and C. B. Alcock, ‘Metallurgical Thermochemistry’, 5th Ed., Int. Series on Materials Science and Technology Vol. 24, (edited by G. V. Rainor) Pergamon Press, Oxford (1979).Google Scholar
  21. [21]
    I. Barin and O. Knacke, ‘Thermochemical Properties of Inorganic Substances’, Springer, Berlin, (1973).Google Scholar
  22. [22]
    Su-II Pyun and F. Müller,High Temp. High Pressures 9 (1977) 111.Google Scholar
  23. [23]
    K. Vetter, ‘Electrochemical Kinetics’, Academic Press, New York, (1967).Google Scholar
  24. [24]
    P. Delahay, ‘New Instrumental Methods in Electrochemistry’, Interscience, New York, (1954).Google Scholar
  25. [25]
    E. Ryshkewitch, ‘Oxide Ceramics Physical Chemistry and Technology’, Academic Press, New York, (1960).Google Scholar
  26. [26]
    M. W. Pepper, K. Li and W. O. Philbrook,Can. Met. Q. 15 (1976) 201.Google Scholar
  27. [27]
    E. D. Hondros and M. McLean,C.N.R.S. Conf. 187 (1969) 219.Google Scholar
  28. [28]
    R. A. Swalin, ‘Thermodynamics of Solids’, 2nd Ed. John Wiley & Sons, New York, (1972).Google Scholar
  29. [29]
    G. J. Brett and L. Seigle,Acta Met. 14 (1966) 575.Google Scholar
  30. [30]
    G. C. Kuczynski,Adv. Colloid. Interface Sci. 3 (1972) 275.Google Scholar
  31. [31]
    M. Hansen and K. Anderko, ‘Constitution of Binary Alloys’, 2nd Ed. McGraw-Hill, New York, (1958).Google Scholar
  32. [32]
    H. G. van Bueren and J. Hornstra, in, ‘Reactivity of Solids’ (edited by J. H. De Boer) Elsevier, Amsterdam, (1961).Google Scholar
  33. [33]
    R. T. Grimley, R. P. Burns and M. G. Inghram,J. Chem. Phys. 35 (1961) 551.Google Scholar
  34. [34]
    J. Askill, ‘Tracer Diffusion Data for Metals, Alloys and Simple Oxides’ Plenum Press, New York, (1970).Google Scholar

Copyright information

© Chapman and Hall Ltd. 1983

Authors and Affiliations

  • D. Gozzi
    • 1
  • P. L. Cignini
    • 1
  1. 1.Istituto di Chimica FisicaUniversità di RomaRomaItaly

Personalised recommendations