Advertisement

Earth, Moon, and Planets

, Volume 60, Issue 1, pp 41–46 | Cite as

Annihilation of antimatter meteors

  • P. M. Papaelias
Article

Abstract

Antimatter meteors probably enter the Earth's atmosphere. If they have the ability to escape complete vaporization during their infall flight, it may be possible, that a fraction of their original mass could survive for short or long time, depending on the mechanisms of ablation. In case of ablation through the annihilation process only, the lifetimeδτ of such an object is following the simple relationδτ = (N L )/(rA), whereδ andA are the density and the atomic weight of the antimatter fragment respectively,R is its radius,r is the rate of annihilation per cm2 of its surface, and N L is the Loschmidt number.

Keywords

Atmosphere Atomic Weight Complete Vaporization Annihilation Process Original Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alfvén, H. and Klein, O.: 1962,Arkiv Physik 23, 187.Google Scholar
  2. Alfvén, H.: 1965,Rev. Mod. Phys. 37, 652.Google Scholar
  3. Alfvén, H.: 1966,Worlds-Antiworlds, W. H. Freeman, London.Google Scholar
  4. Alfvén, H. and Elvius, A.: 1969, ‘Antimatter Quasi Stellar Objects and the Evolution of Galaxies’,Science 164, 911.Google Scholar
  5. Alfvén, H.: 1981,Cosmic Plasma, Astrophys. Space Sci. Library, Kluwer Academic Publishers, Dordrecht.Google Scholar
  6. Ashby, D. E. T. F. and Whitehead, C.: 1971,Nature 230, 180.Google Scholar
  7. Beech, M.: 1988,Earth, Moon, and Planets 40, 213–216.Google Scholar
  8. Bogomolov, E. A.et al.: 1979,Proc. 16th Int. Cond. Cosmic Rays 1, 330.Google Scholar
  9. Buffington, A.et al.: 1981,Astrophys. J. 248, 1179.Google Scholar
  10. Cowan, C., Alturi, C. L., and Libby, W. F.: 1965,Nature 206, 861.Google Scholar
  11. Crawford, J. F.: 1972,Nature 239, 395.Google Scholar
  12. Ganapathy, R.: 1983,Science 220, 1158.Google Scholar
  13. Junker, B. R. and Bardsley, J. N.: 1972,Phys. Rev. Lett. 28, 1227.Google Scholar
  14. Lehnert, B.: 1977,Astrophys. Space Sci. 46, 61.Google Scholar
  15. Lehnert, B.: 1978,Astrophys. Space Sci. 53, 459.Google Scholar
  16. Naunberg, M. and Ruderman, M. A.: 1966,Physics Letters 22, 512.Google Scholar
  17. Omnès, R.: 1969,Phys. Rev. Letters 23, 38–40.Google Scholar
  18. Omnès, R.: 1971,Nature 230, 26–28.Google Scholar
  19. Omnès, R.: 1971,Astron. Astrophys. 11, 450–460.Google Scholar
  20. Omnès, R.: 1971,Astron. Astrophys. 15, 275–284.Google Scholar
  21. Ormes, J. F.: 1988, ‘Searching for Antimatter from the Space Station’, a talk presented at the First International Conference on Scientific Uses of Space Station, Venice, Italy, October 1987, NASA.Google Scholar
  22. Papaelias, P. M.: 1983, ‘Study of the Atom-Antiatom Annihilation Cross-Section and of the Behaviour of Antimatter Meteors in the Earth's Atmosphere’, Ph.D. Thesis, Athens.Google Scholar
  23. Papaelias, P. M.: 1987,Earth, Moon and Planets 38, 13.Google Scholar
  24. Papaelias, P. M. and Apostolakis, A.: 1990,Earth, Moon, and Planets 49, 1–13.Google Scholar
  25. Papaelias, P. M.: 1991,Earth, Moon, and Planets 52, 105–111.Google Scholar
  26. Papaelias, P. M.: 1991,Earth, Moon, and Planets 55, 215–222.Google Scholar
  27. Puget, J. L.: 1970, CERN Report, No. TH1201 (unpublished).Google Scholar
  28. Puget, J. L.: 1971,Nature, Phys. Sci. 230, 173.Google Scholar
  29. Rogers, S. and Thompson, B. W.: 1980,Astrophys. Space Science 71, 257–260.Google Scholar
  30. Sofia, S. and Van Horn, H. M.: 1974,Astrophys. J. 194, 593–595.Google Scholar
  31. Stecker, F. W., Morgan, D. L. and Bredecamp, J.: 1971, ‘Possible Evidence for the Existence of Antimatter on a Cosmological Scale in the Universe’,Phys. Rev. Letters 2, 1469.Google Scholar
  32. Stecker, F. W.: 1981,Ann. N.Y. Acad. Sci. 375, 69.Google Scholar
  33. Stecker, F. W.et al.: 1981,Proc. 17th Int. Conf. Cosmic Rays 9, 211.Google Scholar
  34. Stecker, F. W., Protheroe, R. J. and Kazanas, D.: 1981, ‘Cosmic Ray Antimatter: Is it Primary or Secondary?’, NASA Technical Memorandum No. 82118.Google Scholar
  35. Steigman, G.: 1969, ‘Antimatter and Cosmology’,Nature 224, 477.Google Scholar
  36. Steigman, G.: 1976,Ann. Rev. Astron. Astrophysics 14, 339–372.Google Scholar
  37. Streitmatter, R. E.et al.: 1987, ‘Experimental Limit on Low Energy Antiprotons in the Cosmic Radiation’, A report about the LEAP experiment, NASA, OG 7.3.2.Google Scholar
  38. Szabelski, J., Wdowczyk, J. and Wolfendale, A. W.: 1980, ‘Antimatter in the Primary Cosmic Radiation’,Nature 285, 386.Google Scholar
  39. Webber, W. R., Schönfelder, V., and Diehl, R., 1986,Nature 323(No. 6090), pp. 692–694.Google Scholar
  40. Wyatt, P. J.: 1958,Nature 181, 1194.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • P. M. Papaelias
    • 1
  1. 1.Laboratory of Astrophysics, Dept. of PhysicsNational University of AthensGreece

Personalised recommendations