Skip to main content
Log in

Chromium-depleted zones and the oxidation process in stainless steels

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

It is suggested that, during the oxidation of stainless steels, matter is conserved at the oxide-metal interface by the creation of a dynamic balance between the chromium diffusion fluxes in the alloy and in the oxide. It is shown that the rate of oxidation is insensitive to alloy composition so that a necessary consequence is that the rate-controlling process is always diffusion through the oxide. In addition, the interfacial concentration of chromium remains invariant with time at a value higher than that in thermodynamic equilibrium with the oxide. Some of the predictions made with regard to the depth and kinetics of growth of chromium-depleted zones within the alloy have been checked experimentally inoxidation tests in CO2 at 1123° K on a 20Cr-25Ni stainless steel containing a dispersion of TiN particles. It is concluded that the matter-conservation hypothesis is valid for this material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. J. Wagner,J. Electrochem. Soc. 99, 369 (1952).

    Google Scholar 

  2. M. M. P. Soustelle and R. L. Lalauze,Oxid. Met. 7, 23 (1973).

    Google Scholar 

  3. R. Hales, A. F. Smith, and J. C. Killeen, Proc. BNES Conf. on Corr. of Steels in CO2, Reading (1974), p. 311.

  4. H. E. Evans, D. Raynor, A. C. Roberts, and J. M. Silcock, Proc. Third Int. Conf. on Strength of Metals and Alloys, Cambridge (1973), Vol. 1, p. 190.

    Google Scholar 

  5. H. E. Evans, R. Hales, D. A. Hilton, R. A. Holm, G. Knowies, and R. J. Pearce, Proc. BNES Conf. on Corr. of Steels in CO2, Reading (1974), p. 369.

  6. E. A. Gulbransen and K. F. Andrew,J. Electrochem. Soc. 104, 334 (1957).

    Google Scholar 

  7. D. Mortimer and M. L. Post,Corros. Sci. 8, 499 (1968).

    Google Scholar 

  8. W. C. Hagel,Trans. Am. Soc. Met. 56, 583 (1963).

    Google Scholar 

  9. W. C. Hagel and A. U. Seybolt,J. Electrochem. Soc. 108, 146 (1961).

    Google Scholar 

  10. H. C. Cowen and S. J. Webster, Proc. BNES Int. Conf. on Nuclear Fuel Performance, London (1973), Paper 8.

  11. J. C. Killeen, A. F. Smith, and R. K. Wild,Corros. Sci., in press (1976).

  12. A. F. Smith and G. B. Gibbs,Met. Sci. J. 3, 93 (1969).

    Google Scholar 

  13. T. Ericsson,Oxid. Met. 20, 401 (1970).

    Google Scholar 

  14. M. G. Hobby and G. C. Wood,Oxid. Met. 1, 23 (1969).

    Google Scholar 

  15. J. E. Antill, C. S. Campbell, D. Goodison, W. B. Jepson, and C. G. Stevens, Proc. Third Int. Conf. on Peaceful Uses of Atomic Energy, Geneva (1964), Vol. 9, p. 523.

    Google Scholar 

  16. J. E. Croll and G. R. Wallwork,Oxid. Met. 4, 121 (1972).

    Google Scholar 

  17. D. P. Whittle, D. J. Evans, D. B. Scully, and G. C. Wood,Acta Metall 15, 1421 (1967).

    Google Scholar 

  18. G. C. Wood and D. P. Whittle,Corros. Sci. 4, 263 (1974).

    Google Scholar 

  19. D. P. Whittle, G. C. Wood, D. J. Evans, and D. B. Scully,Acta Metall. 15, 1747 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, H.E., Hilton, D.A. & Holm, R.A. Chromium-depleted zones and the oxidation process in stainless steels. Oxid Met 10, 149–161 (1976). https://doi.org/10.1007/BF00612157

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00612157

Key words

Navigation