Advertisement

Oxidation of Metals

, Volume 6, Issue 3, pp 181–196 | Cite as

High-temperature corrosion of low Cr-Fe alloys in sulfur vapor

  • Toshio Narita
  • Keizo Nishida
Article

Abstract

The sulfidation behavior of low Cr-Fe alloys was studied over the range of 700–900°C under 1 atm of pure sulfur vapor. Sulfidation of alloys with 3.7 and 7.4 wt.% Cr does not follow the parabolic rate law at 750–800° C, although for other alloy compositions and temperatures it obeys that law. Sulfide scales consisted of a three-layer structure. The outer layer was FeS, but the inner and intermediate layers contained FeS, FeCr2S4, and Cr3S4, their relative amounts and morphologies depending on the corrosion temperature and alloy composition. Increasing Cr contents resulted in a change in the morphology of FeCr2S4 from dispersed particles to a thick layer. Ultimately, FeCr2S4 was displaced by Cr3S4. The formation of FeCr2S4 and the scale growth mechanism are discussed also.

Keywords

Sulfide Disperse Particle Outer Layer Alloy Composition Growth Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Narita and K. Nishida,Oxid. Met. 6, 177 (1973).Google Scholar
  2. 2.
    A. K. Krasovskaya and P. V. Gel'd,Fiz. Metal i Metalloved. 7, 626 (1959).Google Scholar
  3. 3.
    K. N. Strafford and R. Manifold,Corns. Sci. 9, 489 (1969).Google Scholar
  4. 4.
    S. Mrowec, T. Walec, and T. Werber,Oxid. Met. 1, 93 (1969).Google Scholar
  5. 5.
    T. Narita and K. Nishida, “Extended abstracts” The 5th ICMC in Tokyo (1972), p. 305.Google Scholar
  6. 6.
    T. Narita and K. Nishida, to be published.Google Scholar
  7. 7.
    H. Pfeiffer and B. Ilschner,Z. Electrochem. 60, 424 (1956).Google Scholar
  8. 8.
    A. Dravnieks and H. J. McDonald,J. Electrochem. Soc. 94, 139 (1948).Google Scholar
  9. 9.
    A. Brückman and J. Romanski,Corros. Sci. 5, 185 (1965).Google Scholar
  10. 10.
    C. Wagner,Z. Physik. Chem. B21, 25 (1933).Google Scholar
  11. 11.
    A. Brückman, J. Gilewicz-Wolter, and S. Mrowec,Corros. Sci. 7, 563 (1967).Google Scholar
  12. 12.
    C. Wagner,Corros. Sci. 9, 91 (1969).Google Scholar
  13. 13.
    K. Hauffe,Oxidation of Metals (Plenum Press, New York, 1965).Google Scholar
  14. 14.
    T. Narita and K. Nishida, Bulletin of the Faculty of Engineering, Hokkaido University, No. 67, 138 (1973).Google Scholar
  15. 15.
    T. Narita and K. Nishida,Trans. Jap. Inst. Met., to be published.Google Scholar
  16. 16.
    W. Albers and C. J. Rooymans,Solid State Comm. 3, 417 (1965).Google Scholar
  17. 17.
    D. Lundqvist,Arkiv Kem. Mineralogi och Geologi 17B (12), 4 (1943).Google Scholar
  18. 18.
    C. Wagner,J. Electrochem. Soc. 103, 571 (1956).Google Scholar

Copyright information

© Plenum Publishing Corporation 1973

Authors and Affiliations

  • Toshio Narita
    • 1
  • Keizo Nishida
    • 1
  1. 1.Metals Research Institute, Faculty of EngineeringHokkaido UniversitySapporoJapan

Personalised recommendations