Skip to main content
Log in

On the high-temperature corrosion of Fe-Cr alloys in sulfur vapor

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The mechanism of sulfidation of Fe-Cr alloys ranging from 8 to 97 wt.% chromium was determined from studies of scale structures, surface morphologies of scale, and reaction kinetics. Although the kinetics of sulfidation were quite similar to those previously determined by Mrowec et al., the structures in the present work were different, being triplex in nature. The growth mechanism of each layer was determined, and the overall sulfidation behavior was compared to the oxidation behavior. Many similarities between the two corrosion processes were observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. J. Bradbury, P. Hancock, and H. Lewis,Metallurgia 67, 3 (1963).

    Google Scholar 

  2. T. K. Ross, A. J. Macnab, and B. E. Leyland,J. Inst. Fuel 33, 540 (1960).

    Google Scholar 

  3. E. B. Backensto, R. D. Drew, and C. C. Stapleford,Corrosion 12, 22t (1956).

    Google Scholar 

  4. “Collection and Correlation of High Temperature Hydrogen Sulfide Corrosion Data,” NACH Tech. Ctte. Rep. No. 56-7,Corrosion 12, 213t (1956).

  5. F. Monkman and N. Grant,Corrosion 9, 460t (1953).

    Google Scholar 

  6. E. L. Simons, G. V. Browning, and H. A. Liebhafsky,Corrosion 11, 505t (1955).

    Google Scholar 

  7. H. Shirley,J. Iron Steel Inst. 182, 144 (1956).

    Google Scholar 

  8. N. R. Bornstein and M. A. DeCrescente,Corrosion 26, 209t (1970).

    Google Scholar 

  9. A. V. Seybolt,Trans. AIME 242, 1955 (1968).

    Google Scholar 

  10. K. N. Stratfford,Metallurg. Rev. 14, 153 (1969).

    Google Scholar 

  11. A. Rahmel and J. A. Gonzalez,Werkstoff Korros. 21, 925 (1970).

    Google Scholar 

  12. S. Mrowec, T. Walec, and T. Werber,Oxid. Met. 1, 93 (1969).

    Google Scholar 

  13. K. Nishida,Trans. ISIJ 10, 421 (1970).

    Google Scholar 

  14. K. N. Strafford and R. Manifold,Corns. Sci. 9, 489 (1969).

    Google Scholar 

  15. T. Narita and K. Nishida, to be published.

  16. A. Krasowskaya and P. Gel'd,Fiz. Metal i Metalloved. 7, 626 (1959).

    Google Scholar 

  17. A. Siemionowa and P. Gel'd,Zh. Fiz. Khim. 32, 1087 (1958).

    Google Scholar 

  18. A. Dravnieks,J. Electrochem. Soc. 102, 435 (1955).

    Google Scholar 

  19. T. Narita and K. Nishida,Oxid. Met. 6, 201 (1973).

    Google Scholar 

  20. K. Nishida and T. Narita, “Extended abstracts” The 5th ICMC in Tokyo (1972), p. 305.

  21. F. Jamin-Changeart,Mem. Sci. Rev. Metallurg. 65, S407 (1968).

    Google Scholar 

  22. D. Lundqvist,Arkiv Keme. Mineralogi och Geologi 17B, No. 12, 4 (1943).

    Google Scholar 

  23. A. Brückmann, S. Mrowec, and T. Werber,Fiz. Metal i Metalloved. 15, 362 (1963).

    Google Scholar 

  24. K. N. Strafford and A. F. Hampton,J. Less-Common Met. 21, 305 (1970).

    Google Scholar 

  25. C. Wagner,Z. Physik. Chem. B 21, 25 (1933).

    Google Scholar 

  26. A. Brückman and J. Romanski,Corros. Sci. 5, 185 (1965).

    Google Scholar 

  27. A. Brückman, J. Gilewicz-Wolter, and S. Mrowec,Oxid. Met. 1, 241 (1969).

    Google Scholar 

  28. S. Mrowec and T. Werber,Corros. Sci. 5, 717 (1965).

    Google Scholar 

  29. P. Gel'd and A. Krasowskaya,Zh. Fiz. Khim. 34, 1587, 1721 (1960).

    Google Scholar 

  30. B. Ilschner and H. Pfeiffer,Z. Electrochem. 60, 424 (1956).

    Google Scholar 

  31. R. A. Meussner and C. E. Birchenall,Corrosion 13, 677t (1957).

    Google Scholar 

  32. S. Mrowec,Corros. Sci. 7, 563 (1967).

    Google Scholar 

  33. S. Mrowec and M. Zastawnik,J. Phys. Chem. Solids 27, 1027 (1966).

    Google Scholar 

  34. G. Romeo, W. W. Smeltzer, and J. S. Kirkaldy,J. Electrochem. Soc. 118, 740, 1336 (1971).

    Google Scholar 

  35. K. N. Strafford and A. F. Hampton,J. Less-Common Met. 25, 435 (1971).

    Google Scholar 

  36. E. Erdös, P. Brezina, and R. Scheidegger,Werkstoff Korros. 22, 148 (1971).

    Google Scholar 

  37. R. Viswanathan and C. J. Spengler,Corrosion 26, 29 (1970).

    Google Scholar 

  38. P. Hager and J. F. Elliot,Trans. AIME 239, 513 (1967).

    Google Scholar 

  39. C. E. Birchenall, private communication (1961).

  40. F. Jellinek,Acta Cryst. 10, 620 (1957).

    Google Scholar 

  41. K. Nishida, K. Nakayama, and T. Narita,Corros. Sci, in press.

  42. K. Matsubara, “A Correction Procedure for Quantitative Electron Probe Microanalysis of Ternary Systems,” The 6th International Conference on X-ray Optics and Microanalysis (1971) in Osaka.

  43. M. Hansen and K. Anderko,Constitution of Binary Alloys, 2nd ed. (McGraw-Hill, New York, 1968), p. 525.

    Google Scholar 

  44. E. T. Turkdogan,Trans. AIME 242, 1665 (1968).

    Google Scholar 

  45. G. C. Wood, T. Hodgkiess, and D. P. Whittle,Corros. Sci. 6, 129 (1966).

    Google Scholar 

  46. D. P. Whittle, D. J. Evans, D. B. Scully, and G. C. Wood,Acta Met. 15, 1421 (1967).

    Google Scholar 

  47. G. L. Wulf, M. B. McGirr, and G. R. Wallwork,Corros. Sci. 9, 739 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narita, T., Nishida, K. On the high-temperature corrosion of Fe-Cr alloys in sulfur vapor. Oxid Met 6, 157–180 (1973). https://doi.org/10.1007/BF00612111

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00612111

Keywords

Navigation