Skip to main content
Log in

Oxidation of a Ni-Cr-Al alloy at 850°C in air containing HCl gas

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Moist air containing HCl gas caused the oxide formed on a Ni-Cr-Al alloy at 850°C to crack during the early stages of growth, and extensive blistering and spalling occurred on cooling. In dry air containing HCl gas no oxide cracking was observed at temperature although the oxide blistered and spalled on cooling. In dry or moist air free from HCl an adherent protective oxide formed which did not spall on cooling. The oxide cracking at temperature has been attributed to the production of hydrogen by reaction of Cr and Al in the alloy with water vapor and the removal of NiO as NiCl2 by reaction with HCl gas. Hydrogen produced by reaction of water vapor or HCl with Cr or Al dissolved in the alloy at temperature, but on cooling the hydrogen was released, causing the oxide to blister and spall. Preoxidation of the alloy in HCl-free atmospheres eliminated these effects of HCl gas in short-term isothermal tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Boettger and F. Umland,Werkst. Korros. 25, 805 (1974).

    Google Scholar 

  2. J. Stringer and S. Ehrlich, ASME Winter Annual Meeting, Dec. 5., 1976, Paper 76-WA/C04.

  3. J. F. G. Condé and B. A. Wareham, “Gas Turbine Materials in the Marine Environment,” in Proc. Conf. Castine, Maine, Metals & Ceramics Info. Centre, Batelle, 1974, pp. 73–92.

    Google Scholar 

  4. J. A. Goebel, F. S. Pettit, and G. W. Goward,Metall. Trans. 4, 261 (1973).

    Google Scholar 

  5. R. A. Rapp, inMaterials Problems and Research Opportunities in Coal Conversion, Vol. II, R. W. Staehle, ed. (Ohio State University Press, Columbus, Ohio, 1974), pp. 313–334.

    Google Scholar 

  6. R. C. Hurst, S. B. Johnson, M. Davies, and P. Hancock, inDeposition and Corrosion in Gas Turbines, A. Hart and A. J. B. Cutler, eds. (Applied Scientific Pubications, London, 1973), pp. 143–157.

    Google Scholar 

  7. J. A. Waddams, J. C. Wright, and P. S. Gray,J. Inst. Fuel. 32, 246 (1959).

    Google Scholar 

  8. M. K. Hossain and S. R. J. Saunders,Oxid. Met.,12, 1 (1978).

    Google Scholar 

  9. E. W. Washburn, ed.,International Critical Tables of Numerical Data, Vol. 3 (McGraw-Hill, New York and London, 1926), p. 301.

    Google Scholar 

  10. T. G. Dye, A. Fursey, G. O. Lloyd, and M. Robson,J. Sci. Instrum. 1, 463 (1968).

    Google Scholar 

  11. G. C. Wood,Oxid. Met. 2, 11 (1970).

    Google Scholar 

  12. A. J. W. Moore,Metal Surfaces: Structure, Energetics and Kinetics (American Society of Metallurgists, Ohio, 1963), Chap. 5.

    Google Scholar 

  13. P. R. Rowland,Nature 164, 1091 (1949).

    Google Scholar 

  14. H. Mahl and I. N. Stranski,Z. Phys. Chem. 52, 257 (1942).

    Google Scholar 

  15. “MT DATA,” The NPL computational numerical data bank for metallurgical and inorganic substances (National Physical Laboratory, Teddington, Middlesex, England, 1974).

    Google Scholar 

  16. R. J. Fruehan and L. J. Martonik,Metall. Trans. 4, 2793 (1973).

    Google Scholar 

  17. G. W. Rhead and H. Mykura,Acta Metall. 10, 843 (1962).

    Google Scholar 

  18. D. P. Smith,Hydrogen in Metals (University of Chicago Press, Chicago, 1948), Chaps. 5, 6.

    Google Scholar 

  19. H. M. Flower and P. R. Swann,Corros. Sci. 17, 305 (1977).

    Google Scholar 

  20. T. P. Hoar and N. F. Mott,J. Phys. Chem. Solids 9, 97 (1959).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Sandwich course student at Surrey University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hossain, M.K., Noke, A.C. & Saunders, S.R.J. Oxidation of a Ni-Cr-Al alloy at 850°C in air containing HCl gas. Oxid Met 12, 451–471 (1978). https://doi.org/10.1007/BF00612090

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00612090

Key words

Navigation