Skip to main content
Log in

Influence on the oxidation kinetics of metals by control of the structure of oxide scales

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

An explanation of the deviation from the parabolic law is the treatment which considers both shortcircuit and lattice diffusion in the oxide scale. In this study we examine how the oxidation kinetics are influenced by changing the structure of the scale of copper oxide in order to confirm the role of short-circuit diffusion in determining the oxidation rate. In addition we explain the oxidation kinetics of copper and nickel by using a model of the scale structure which includes recrystallization and grain growth. Results are as follows: (1) The nucleation and growth behavior of oxide have a direct effect on the structure and in turn the oxidation kinetics due to short-circuit diffusion. (2) A modified treatment is valid in the region where volume diffusion and short-circuit diffusion play an important role in which it is necessary to consider the scale structure such as the grain size distribution and the boundary width. (3) When recrystallization takes place it is necessary to consider the model of a two-layered scale structure which is different in properties and morphology. (4) In this region the rate curves are S-shaped when oxide recrystallization takes place and exhibit a transition from a parabolic to an nth-power relationship (n>2) when grain growth takes place.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Wagner,Z. Phys. Chem., Abt. B 21, 25 (1933).

    Google Scholar 

  2. C. Wagner,Atom Movements (American Society of Metals, Cleveland, 1951), p. 153.

    Google Scholar 

  3. W. W. Smeltzer, R. R. Haering, and J. S. Kirkaldy,Acta Metall. 9, 880 (1961).

    Google Scholar 

  4. J. M. Perrow, W. W. Smeltzer, and J. D. Embury,Acta Metall. 16, 1209 (1968).

    Google Scholar 

  5. R. Herchl, N. N. Khoi, T. Homma, and W. W. Smeltzer,Oxid. Met. 4, 35 (1972).

    Google Scholar 

  6. N. N. Khoi, W. W. Smeltzer, and J. D. Embury,J. Electrochem. Soc. 122, 1495 (1975).

    Google Scholar 

  7. K. R. Lawless and D. F. Mitchell,Mem. Sci. Rev. Metall. LXII, 27 (1965).

    Google Scholar 

  8. B. S. Borie and C. J. Sparks,Acta Crystallogr. 14, 569 (1961).

    Google Scholar 

  9. T. Homma and T. Yoneoka,J. Appl. Phys. 46, 1459 (1975).

    Google Scholar 

  10. W. Bollman,Crystal Defects and Crystalline Interfaces (Springer, Berlin, 1975).

    Google Scholar 

  11. J. G. Byrne,Recovery, Recrystallization and Grain Growth (Macmillan, New York, 1965), p. 93.

    Google Scholar 

  12. T. Homma, Report of the Institute of Industrial Science, The University of Tokyo (1965), p. 15.

  13. J. V. Cathcart, G. F. Peterson, and C. J. Sparks,Surface and Interface, Vol. I, J. J. Burke, N. W. Reed, and V. Weiss, eds. (Syracuse University Press, New York, 1967), p. 333.

    Google Scholar 

  14. N. Smith,J. Amer. Chem. Soc. 58, 173 (1936).

    Google Scholar 

  15. O. Kubashewski and B. E. Hopkins,Oxidation of Metals and Alloys, 2nd ed. (Butterworths, London, 1965), p. 54.

    Google Scholar 

  16. A. Ronnquist,J. Inst. Met. 91, 89 (1962).

    Google Scholar 

  17. E. A. Gulbransen and K. F. Andrew,J. Electrochem. Soc. 101, 128 (1954).

    Google Scholar 

  18. A. Bravnics and H. J. Macdonald,J. Electrochem. Soc. 94, 139 (1948).

    Google Scholar 

  19. R. Linder and A. Akerstrom,Discuss. Faraday Soc. 23, 133 (1957).

    Google Scholar 

  20. W. J. Moor and B. Selikson,J. Chem. Phys. 19, 1539 (1951);20, 927 (1957).

    Google Scholar 

  21. P. A. Beck,Adv. Phys. 3, 245 (1954).

    Google Scholar 

  22. L. Zikovsky, G. Vagnard, and J. S. Daniel,J. Am. Ceram. Soc. 55, 134 (1972).

    Google Scholar 

  23. W. D. Kingrey,J. Am. Ceram. Soc. 57, 1, 74 (1974).

    Google Scholar 

  24. R. E. Ristler and R. L. Coble,J. Appl. Phys. 45, 1507 (1974).

    Google Scholar 

  25. T. Ueno,Jpn. J. Appl. Phys. 13, 773 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was performed at the University of Tokyo in partial fulfillment of the requirements for the degree of Doctor of Engineering.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsnnaga, S., Homma, T. Influence on the oxidation kinetics of metals by control of the structure of oxide scales. Oxid Met 10, 361–376 (1976). https://doi.org/10.1007/BF00612048

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00612048

Key words

Navigation