Advertisement

Journal of comparative physiology

, Volume 103, Issue 3, pp 247–272 | Cite as

Theoretical and experimental approaches to spatial aspects of electrolocation

  • Walter Heiligenberg
Article

Summary

The shape of an electric fish's field, within an aquarium of finite size, was calculated by numerical computer simulation (Figs. 3, 4). An object differing in conductivity from the surrounding water distorts the electric field of the fish. The associated changes in potential on the animal's body surface are monitored by electroreceptors and thus represent the “electric image” of the object (Fig. 6). The “intensity” of this image decays approximately with a negative power function of the distance between object and fish (Fig. 11). Body geometry, such as an elongated tail, as well as resistances of the interior body and skin are of prime importance for electrolocation performance (Figs. 7, 8, 10). Some theoretical conclusions are supported by neurophysiological and behavioral data (Figs. 12, 13), others still have to be tested experimentally.

Keywords

Computer Simulation Numerical Computer Body Surface Experimental Approach Power Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bastian, J.: Electrosensory input to the corpus cerebelli of the high frequency electric fishEigenmannia virescens. J. comp. Physiol.90, 1–24 (1974)Google Scholar
  2. Bastian, J.: Receptive fields of cerebellar cells receiving exteroceptive input in a gymnotoid fish. Neurophysiol.38, 285–300 (1975a)Google Scholar
  3. Bastian, J.: The range of electrolocation: A comparison of eleotroreceptor responses and the responses of cerebellar neurons in a gymnotoid fish. ubmitted to J. comp. Physiol. (1975b)Google Scholar
  4. Belbenoit, P.: Conditionnement instrumental de l'électroperception chezGnathonemus petersii. Z. vergl. Physiol.67, 192–204 (1969)Google Scholar
  5. Belbenoit, P.: Détermination de la distance maximale d'électroreception des objets chez les Mormyridés. J. de Physiol.62, Suppl. 3, 344 (1970)Google Scholar
  6. Bennett, M. L. V.: Comparative physiology: electric organs. Ann. Rev. Physiol.32, 471–529 (1970)Google Scholar
  7. Bennett, M. V. L.: Electric organs. In: Fish physiology (Hoar and Randall, eds.), vol. 5, p. 347–491. New York: Academic Press 1971aGoogle Scholar
  8. Bennett, M. V. L.: Electroreception. In: Fish physiology (Hoar and Randall, eds.), vol. 5, p. 493–574. New York: Academic Press 1971bGoogle Scholar
  9. Bullock, Th. H.: Biological sensors. In: Vistas in science. Albuquerque: Univ. of New Mexico Press 1968Google Scholar
  10. Bullock, Th. H., Behrend, K., Heiligenberg, W.: Comparison of the jamming avoidance response in gymnotoid and gymnarchid electric fish: A case of convergent evolution of behavior and its sensory basis. J. comp. Physiol.,103, 97–121 (1975)Google Scholar
  11. Bullock, Th. H., Hamstra, R. H., Scheich, H.: The jamming avoidance response of high frequency electric fish. J. comp. Physiol.77, 1–48 (1972)Google Scholar
  12. Enger, P. S., Szabo, T.: Activity of central neurons involved in electroreception in some weakly electric fish. J. Neurophysiol.28, 800–818 (1965)Google Scholar
  13. Forsythe, G. E., Wasow, W. R.: Finite-difference methods for partial differential equations. New York-London: John Wiley, Inc. 1960Google Scholar
  14. Frey, A. H., Eichert, E. S. III.: The nature of electrosensing in the fish. Biophys.12, 1326–1358 (1972)Google Scholar
  15. Hagiwara, S., Szabo, T., Enger, P. S.: Electroreceptor mechanisms in a high frequency electric fish,Sternarchus albifrons. J. Neurophysiol.28, 784–799 (1965)Google Scholar
  16. Harder, W.: Nachweis aktiver elektrischer Ortung bei Mormyriden. Z. Tierpsychol.30, 94–102 (1972)Google Scholar
  17. Harder, W., Schief, A., Uhlemann, H.: Zur Funktion des elektrischen Organs vonGnathonemus petersii. Z. vergl. Physiol.48, 302–331 (1964)Google Scholar
  18. Heiligenberg, W.: Electrolocation of objects in the electric fishEigenmannia. J. comp. Physiol.87, 137–164 (1973)Google Scholar
  19. Heiligenberg, W.: Electrolocation and jamming avoidance in aHypopygus, an electric fish with pulse-type discharges. J. comp. Physiol.91, 223–240 (1974)Google Scholar
  20. Heiligenberg, W.: Electrolocation and jamming avoidance in the electric fish,Gymnarchus niloticus. (Gymnarchidae, Mormyriformes). J. comp. Physiol.103, 55–67 (1975)Google Scholar
  21. Hopkins, C. D.: Patterns of electrical communication among gymnotoid fish. PhD Thesis, Rockefeller Univ. New York (1972)Google Scholar
  22. Knudsen, E. I.: Behavioral thresholds to electric signals in high frequency electric fish. J. comp. Physiol.91, 333–353 (1974)Google Scholar
  23. Knudsen, E. I.: Spatial aspects of the electric fields generated by weakly electric fish. J. comp. Physiol.99, 103–118 (1975)Google Scholar
  24. Lissmann, H. W., Machin, K. E.: The mechanism of object location inGymnarchus niloticus and similar fish. J. exp. Biol.35, 451–486 (1958)Google Scholar
  25. Peters, R. C., Loos, W. J. G., Gerritsen, A.: Distribution of electroreceptors, bioelectric field patterns, and skin resistance in the catfish,Ictalurus nebulosus. J. comp. Physiol.92, 11–22 (1974)Google Scholar
  26. Scheich, H., Bullock, Th. H.: The detection of electric fields from electric organs. In: Handbook of sensory physiology (A. Fessard, ed.), vol. III/3. Berlin-Heidelberg-New York: Springer 1974Google Scholar
  27. Szabo, T.: Anatomy of the specialized lateral line organs of electroreception. In: Handbook of sensory physiology (A. Fessard, ed.), vol. III/3. Berlin-Heidelberg-New York: Springer 1974Google Scholar
  28. Szabo, T., Fessard, A.: Physiology of electroreceptors. In: Handbook of sensory physiology (A. Fessard, ed.), vol. III/3. Berlin-Heidelberg-New York: Springer 1974Google Scholar
  29. Szabo, T., Kalmijn, A. J., Enger, P.S., Bullock, Th. H.: Microampullary organs and a submandibular sense organ in the fresh water ray,Potamotrygon. J. comp. Physiol.79, 15–27 (1972)Google Scholar
  30. Wendt, G.: Statische Felder und Stationäre Ströme. In: Handbuch der Physik, vol. 16 (S. Flügge, ed.). Berlin-Göttingen-Heidelberg: Springer 1958Google Scholar
  31. Westby, G. W. M.: Has the latency dependent response ofGymnotus carapo to dischargetriggered stimuli a bearing on electric fish communication? J. comp. Physiol.96, 307–341 (1975)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Walter Heiligenberg
    • 1
  1. 1.Neurobiology Unit, Scripps Institution of OceanographyUCSDLa JollaUSA

Personalised recommendations