Journal of comparative physiology

, Volume 147, Issue 4, pp 423–432 | Cite as

Electrical and mechanical stimulation of a spider slit sensillum: Outward current excites

  • Ernst-August Seyfarth
  • Johannes Bohnenberger
  • John Thorson


  1. 1.

    When current is passed between a surface electrode on the lyriform organ of the spider and a reference electrode in the hemolymph, the spike rates of the slit-sensillum sensory cells are modulated. Outward current (surface electrode negative) excites and inward current abolishes spontaneous activity (Fig. 2). This electrical response is the opposite of that reported in other arthropod mechano- and chemoreceptors. It is, however, compatible with a distal site of the spike-initiating region, possibly near the dendrite tip. Such an arrangement in the spider parallels the finding of Rick et al. (1976) that the lymph space surrounding the apical dendrite appears (unlike the situation in the insects examined) to have a high concentration of Na+.

  2. 2.

    Spikes recorded at the surface of this mechanoreceptor during compression of the slit do not differ appreciably in shape from those elicited by outward current (Fig. 3). Both have a negative leading edge; again, the polarity is the opposite of that measured in most insect epithelial-receptor spikes.

  3. 3.

    Responses to electrical and mechanical stimuli can be superimposed (Fig. 4), so that electrical stimuli can be used in behavioral experiments to modulate the response to mechanical input.

  4. 4.

    The spike rate elicited by maintained steps of outward current does not decline (Fig. 5). Hence the rapid adaptation to mechanical stimuli is not a property of the spike-initiating process that is driven by imposed current. On the other hand, responses to electrical test stimuli do sample some slowly recovering aftereffect of a period of adaptation to a mechanical stimulus (Fig. 6).

  5. 5.

    Although the distributions of capacitance and resistance near these sensilla are unknown, we discuss trial explanations of the negative spikes measured, by qualitative comparison with the volume conductor analyses of Lorente de Nó.



Surface Electrode Test Stimulus Mechanical Stimulus Outward Current Volume Conductor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barth FG (1967) Ein einzelnes Spaltsinnesorgan auf dem Spinnentarsus: seine Erregung in Abhängigkeit von den Parametern des Luftschallreizes. Z Vergl Physiol 55:407–499Google Scholar
  2. Barth FG (1971) Der sensorische Apparat der Spaltsinnesorgane (Cupiennius salei Keys., Araneae). Z Zellforsch 112:212–246Google Scholar
  3. Barth FG (1972) Die Physiologie der Spaltsinnesorgane II. Funktionelle Morphologie eines Mechanoreceptors. J Comp Physiol 81:159–186Google Scholar
  4. Barth FG (1976) Sensory information from strains in the exoskeleton. In: Hepburn HR (ed) The insect integument. Elsevier, Amsterdam Oxford New York, pp 445–473Google Scholar
  5. Barth FG (1981) Strain detection in the arthropod exoskeleton. In: Laverack MS, Cosens D (eds) Sense organs. Blackie, Glasgow, pp 112–141Google Scholar
  6. Barth FG, Bohnenberger J (1978) Lyriform slit sense organs: Thresholds and stimulus intensity ranges in a multiunit mechanoreceptor. J Comp Physiol 125:37–43Google Scholar
  7. Barth FG, Libera W (1970) Ein Atlas der Spaltsinnesorgane vonCupiennius salei Keys. Chelicerata (Araneae). Z Morphol Tiere 68:343–368Google Scholar
  8. Bohnenberger J (1981) Matched transfer characteristics of single units in a compound slit sense organ. J Comp Physiol 142:391–402Google Scholar
  9. Chapman KM (1965) Campaniform sensilla on the tactile spines of the legs of the cockroach. J Exp Biol 42:191–203Google Scholar
  10. Chapman KM, Pankhurst JH (1967) Conduction velocities and their temperature coefficients in sensory nerve fibres of cockroach legs. J Exp Biol 46:63–84Google Scholar
  11. Edwards C (1955) Changes in the discharge from a muscle spindle produced by electrotonus in the sensory nerve. J Physiol 127:636–640Google Scholar
  12. Erler G, Thurm U (1978) Die Impulsantwort epithelialer Rezeptoren in Abhängigkeit von der transepithelialen Potentialdifferenz. Verh Dtsch Zool Ges 71:279Google Scholar
  13. Erler G, Thurm U (1981) Dendritic impulse initiation in an epithelial sensory neuron. J Comp Physiol 142:237–249Google Scholar
  14. Gray JAB (1959) Initiation of impulses of receptors. In: Field J (ed) Handbook of physiology, sect 1, Neurophysiology. Am Physiol Soc, Washington, DC, pp 123–145Google Scholar
  15. Guillet JC, Bernard J (1972) Shape and amplitude of the spikes induced by natural or electrical stimulation in insect receptors. J Insect Physiol 18:2155–2171Google Scholar
  16. Guillet JC, Bernard J, Coillot JP, Callec JJ (1980) Electrical properties of the dendrite in an insect mechanoreceptor: Effects of antidromic or direct electrical stimulation. J Insect Physiol 26:755–762Google Scholar
  17. Hartline HK, Coulter NA, Wagner HG (1952) Effects of electric current on responses of single photoreceptor units in the eye ofLimulus. Fed Proc 11:65–66Google Scholar
  18. Hartman HB, Boettiger EG (1967) The functional organization of the propus-dactylus organ inCancer irroratus Say. Comp Biochem Physiol 22:651–663Google Scholar
  19. Heinzel H-G, Gewecke M (1979) Directional sensitivity of the antennal campaniform sensilla in locusts. Naturwissenschaften 66:212Google Scholar
  20. Kaissling K-E, Thorson J (1980) Insect olfactory sensilla: Structural, chemical and electrical aspects of the functional organization. In: Hall LM, Hildebrand JG, Satelle DB (eds) Receptors for neurotransmitters, hormones and pheromones in insects. Elsevier, Amsterdam Oxford New York, pp 261–282Google Scholar
  21. Kramer JJ de, Molen JN van der (1980) The pore mechanism of the contact chemoreceptors of the blow fly,Calliphora vicina. In: Starre H van der (ed) Olfaction and taste, VII. IRL Press, London, pp 61–64Google Scholar
  22. Küppers J (1974) Measurements of the ionic milieu of the receptor terminal in mechanoreceptive sensilla of insects. In: Schwartzkopff J (ed) Mechanoreception. Abh Rhein-Westf Akad Wiss 53:387–394Google Scholar
  23. Lorente de Nó R (1947) A study of nerve physiology. Analysis of the distribution of the action currents of nerve in volume conductors. Stud Rockefeller Inst Med Res 132:384–482Google Scholar
  24. Maes FW (1977) Simultaneous chemical and electrical stimulation of labellar taste hairs of the blowflyCalliphora vicina. J Insect Physiol 23:453–460Google Scholar
  25. Mann DW, Chapman KM (1975) Component mechanisms of sensitivity and adaptation in an insect mechanoreceptor. Brain Res 97:331–336Google Scholar
  26. Morita H, Yamashita S (1959) Generator potential of insect chemoreceptor. Science 130:922Google Scholar
  27. Pringle JWS (1955) The function of the lyriform organs of arachnids. J Exp Biol 32:270–278Google Scholar
  28. Rick R, Barth FG, Pavel A von (1976) X-ray microanalysis of receptor lymph in a cuticular arthropod sensillum. J Comp Physiol 110:89–95Google Scholar
  29. Schlegel P (1970) Die Leistungen eines Gelenkreceptors der Antenne vonCalliphora für die Perzeption von Luftströmungen. Elektrophysiologische Untersuchungen. Z Vergl Physiol 66:45–77Google Scholar
  30. Smola U (1970) Rezeptor- und Aktionspotentiale der Sinneshaare auf dem Kopf der WanderheuschreckeLocusta migratoria. Z Vergl Physiol 70:335–348Google Scholar
  31. Seyfarth E-A (1978a) Mechanoreceptors and proprioceptive reflexes: Lyriform organs in the spider leg. Symp Zool Soc (Lond) 42:457–467Google Scholar
  32. Seyfarth E-A (1978b) Lyriform slit sense organs and muscle reflexes in the spider leg. J Comp Physiol 125:45–57Google Scholar
  33. Seyfarth E-A, Barth FG (1972) Compound slit sense organs on the spider leg: Mechanoreceptors involved in kinesthetic orientation. J Comp Physiol 78:176–191Google Scholar
  34. Thurm U (1965) An insect mechanoreceptor II. Receptor potentials. Cold Spring Harbor Symp Quant Biol 30:83–94Google Scholar
  35. Thurm U (1974) Basics of the generation of receptor potentials in epidermal mechanoreceptors of insects. In: Schwartzkopff J (ed) Mechanoreception. Abh Rhein-Westf Akad Wiss 53:355–385Google Scholar
  36. Thurm U, Wessel G (1979) Metabolism-dependent transepithelial potential differences at epidermal receptors of arthropods. J Comp Physiol 134:119–130Google Scholar
  37. Thurm U, Küppers J (1980) Epithelial physiology of insect sensilla. In: Locke M, Smith D (eds) Insect biology in the future. Academic Press, New York, pp 735–763Google Scholar
  38. Wolbarsht ML (1960) Electrical characteristics of insect mechanoreceptors. J Gen Physiol 44:105–122Google Scholar
  39. Wolbarsht ML (1965) Receptor sites in insect chemoreceptors. Cold Spring Harbor Symp Quant Biol 30:281–288Google Scholar
  40. Woodbury JW (1960) Potentials in a volume conductor. In: Ruch TC, Fulton JF (eds) Medical physiology and biophysics. Saunders, Philadelphia London, pp 83–91Google Scholar
  41. Yamada M (1971) The dendritic action potentials in an olfactory hair of the fruit-piercing moth,Ooaesia excavata. J Insect Physiol 17:169–179Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Ernst-August Seyfarth
    • 1
  • Johannes Bohnenberger
    • 1
  • John Thorson
    • 1
  1. 1.Gruppe SinnesphysiologieZoologisches Institut der J.W. Goethe-UniversitätFrankfurt am Main 1Federal Republic of Germany

Personalised recommendations