Journal of comparative physiology

, Volume 96, Issue 1, pp 37–52 | Cite as

Ventilatory muscle activity in restrained and free-swimming dragonfly larvae (Odonata: Anisoptera)

  • R. S. Pickard
  • P. J. Mill


The roles of certain abdominal muscles in ventilatory behaviour are discussed and illustrated with records of muscular activity obtained mainly from free-swimming animals. The following muscles are shown to be active during normal ventilation (Vn): respiratory and anterior dorso-ventrals (RDV and ADV), longitudinal tergal (LT), diaphragm, sub-intestinal and adductors of the anal appendages (VADP). The posterior dorso-ventral, lateral primary longitudinal sterno-pleural, and dorso-ventral oblique muscles were found to be inactive duringVn. TheRDV, ADV, LT andVADP are also active during ventilatory movements other thanVn.RDV activity is shown to be more variable in the free-swimming animal than recordings from dissected and restrained preparations previously suggested. Activity in theADV duringVn shows a reciprocal relationship with that in theRDV. Postulated control elements in larval ventilation are found to parallel many described in other ventilatory systems and motor rhythms generally.


Muscle Activity Reciprocal Relationship Abdominal Muscle Muscular Activity Control Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Davis, W. J., Kennedy, D.: Command interneurons controlling swimmeret movements in the lobster. III. Temporal relationships among bursts in different motorneurons. J. Neurophysiol.35, 20–29 (1972)Google Scholar
  2. Fielden, A.: Transmission through the last abdominal ganglion of the dragonfly nymph,Anax imperator. J. exp. Biol.37, 832–844 (1960)Google Scholar
  3. Fielden, A.: Properties of interneurones in the abdominal nerve-cord of a dragonfly nymph. J. exp. Biol.40, 541–552 (1963a)Google Scholar
  4. Fielden, A.: The localisation of function in the root of an insect segmental nerve. J. exp. Biol.40, 553–561 (1963b)Google Scholar
  5. Fielden, A., Hughes, G. M.: Unit activity in the abdominal nerve-cord of a dragonfly nymph. J. exp. Biol.39, 31–44 (1962)Google Scholar
  6. Fourtner, C. R., Drewes, C. D., Pax, R. A.: Rhythmic motor outputs co-ordinating the respiratory movement of the gill plates ofLimulus polyphemus. Comp. Biochem. Physiol. A38, 751–762 (1971)Google Scholar
  7. Huber, F.: Experimentelle Untersuchungen zur nervösen Atmungsregulation der Orthopteren (Saltatoria-Gryllidea). Z. vergl. Physiol.43, 359–391 (1960)Google Scholar
  8. Hugelin, A., Cohen, M. J.: The reticular activating system and respiratory regulation in the cat. Ann. N. Y. Acad. Sci.109, 586–603 (1963)Google Scholar
  9. Hughes, G. M., Mill, P. J.: Patterns of ventilation in dragonfly larvae. J. exp. Biol.44, 317–333 (1966)Google Scholar
  10. Hughes, G. M., Wiersma, C. A. G.: The co-ordination of swimmeret movements in the crayfish,Procambarus clarkii (Girard). J. exp. Biol.37, 657–670 (1960)Google Scholar
  11. Ikeda, K., Wiersma, C. A. G.: Autogenic rhythmicity in the abdominal ganglia of the crayfish: the control of swimmeret movements. Comp. Biochem. Physiol.12, 107–115 (1964)Google Scholar
  12. Kammer, A. E.: A comparative study of motor patterns during pre-flight warm-up in hawkmoths. Z. vergl. Physiol.70, 45–56 (1970)Google Scholar
  13. Kennedy, D.: Input and output connections of single arthropod neurons. In: Physiological and biochemical aspects of nervous integration (ed. F. D. Carlson). New Jersey: Prentice-Hall 1968Google Scholar
  14. Knights, A.: The activity of single motor fibres in arthropods. I. The dragonfly nymph. J. exp. Biol.42, 447–461 (1965)Google Scholar
  15. Lewis, G. W., Miller, P. L., Mills, P. S.: Neuro-muscular mechanisms of abdominal pumping in the locust. J. exp. Biol.59, 149–168 (1973)Google Scholar
  16. Mill, P. J.: An anatomical study of the abdominal nervous and muscular systems of dragonfly (Aeschnidae) nymphs. Proc. Zool. Soc.145, 57–73 (1965)Google Scholar
  17. Mill, P. J.: Neural patterns associated with ventilatory movements in dragonfly larvae. J. exp. Biol.52, 167–175 (1970)Google Scholar
  18. Mill, P. J., Hughes, G. M.: The nervous control of ventilation in dragonfly larvae. J. exp. Biol.44, 297–316 (1966)Google Scholar
  19. Mill, P. J., Pickard, R. S.: Jet-propulsion in anisopteran dragonfly larvae. J. comp. Physiol., in press (1975)Google Scholar
  20. Miller, P. L.: Respiration in the desert locust. I. The control of ventilation. J. exp. Biol.37, 224–236 (1960)Google Scholar
  21. Miller, P. L.: Spiracle control in adult dragonflies. J. exp. Biol.39, 513–535 (1962)Google Scholar
  22. Mulloney, B.: Impulse patterns in the flight motor neurones ofBombus californicus andOncopeltus fasciatus. J. exp. Biol.52, 59–77 (1970)Google Scholar
  23. Pickard, R. S., Mill, P. J.: Ventilatory muscle activity in intact preparations of aeshnid dragonfly larvae. J. exp. Biol.56, 527–536 (1972)Google Scholar
  24. Pickard, R. S., Mill, P. J.: Ventilatory movements of the abdomen and branchial apparatus in dragonfly larvae (Odonata: Anisoptera). J. Zool. (Lond.),174, 23–40 (1974)Google Scholar
  25. Pond, C. M.: The initiation of flight in unrestrained locusts,Schistocerca gregaria. J. comp. Physiol.80, 163–178 (1972)Google Scholar
  26. Ruch, T. C., Fulton, J. F.: Medical physiology and biophysics, 18th ed. Philadelphia: Saunders, 1960Google Scholar
  27. Stein, P. S. G.: Intersegmental co-ordination of swimmeret motorneuron activity in crayfish. J. Neurophysiol.34, 310–318 (1971)Google Scholar
  28. Steiner, L. F.: Homologies of tracheal branches in the nymph ofAnax junius based on their correlation with the muscles they supply. Ann. ent. Soc. Amer.22, 297–309 (1929)Google Scholar
  29. Tonner, F.: Mechanik und Koordination der Atem- und Schwimmbewegung bei Libellenlarven. Z. wiss. Zool.147, 433–454 (1936)Google Scholar
  30. Wallengren, H.: Physiologisch-biologische Studien über die Atmung bei den Arthropoden. II. Die Mechanik der Atembewegungen beiAeschna Larven. Acta Univ. Lund, N. F., A. F. D. 2,10, 1–24 (1914)Google Scholar
  31. Whedon, A. D.: The comparative physiology and possible adaptations of the abdomen in the Odonata. Trans. Amer. ent. Soc.44, 373–437 (1919)Google Scholar
  32. Wiersma, C. A. G., Ikeda, K.: Interneurones commanding swimmeret movements in the crayfish,Procambarus clarkii (Girard). Comp. Biochem. Physiol.12, 509–525 (1964)Google Scholar
  33. Wilson, D. M.: Proprioceptive leg reflexes in cockroaches. J. exp. Biol.43, 397–409 (1965)Google Scholar
  34. Wilson, D. M., Wyman, R.: Motor output patterns during random and rhythmic stimulation of locust thoracic ganglia. Biophys. J.5, 121–143 (1965)Google Scholar
  35. Zawarzin, A.: Histologische Studien über Insekten. V. Über die histologische Beschaffenheit des unpaaren ventralen Nervs der Insekten. Z. wiss. Zool.122, 97–115 (1924)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • R. S. Pickard
    • 1
    • 2
  • P. J. Mill
    • 1
    • 2
  1. 1.Department of Pure and Applied ZoologyUniversity of LeedsLeedsEngland
  2. 2.Department of ZoologyUniversity College Cardiff (F1 1XL)WalesEngland

Personalised recommendations