Journal of Comparative Physiology A

, Volume 160, Issue 5, pp 693–702 | Cite as

Acoustic communication in the poison-arrow frogPhyllobates tricolor: advertisement calls and their effects on behavior and metabolic brain activity of recipients

  • E. Zimmermann
  • H. Rahmann


  1. 1.

    Advertisement calls of the social diurnal tropical dendrobatid frogPhyllobates tricolor are produced exclusively by sexually active territorial males. They show a relatively simple frequency and temporal pattern (Fig. 2).

  2. 2.

    Changes in behavior of conspecifics are released by short- or long-term presentation or deprivation of advertisement calls. Depending on the sound amplitude, artificial stimulation with this call type either elicits antiphonal calling or phonotactic responses in sexually active territorial males. Gravid females respond phonotactically. Under permanent socio-acoustic stimulation by conspecifics, males and females show reproductive behavior throughout the year (Figs. 3, 4). Deprivation from conspecifics and from advertisement calls by isolating individuals of both sexes for 3 months results in cessation of sexual activity in both sexes. These results indicate that advertisement calls trigger both short-term behavioral effects and the reproductive state in this tropical anuran species.

  3. 3.

    The high resolution (3H)2 DG-autoradiographic technique has been used to localize and quantitatively map changes in metabolic brain activity due to advertisement call stimulation and deprivation (Figs. 5, 6). When the relative amount of (3H)2DG-uptake (¯x) in the brain of control, non-stimulated, sexually active frogs (C) is compared to deprived, sexually inactive frogs (D) and stimulated, sexually active frogs (S), the following significant relationships are obtained:

  1. (a)

    Label uptake by dorsal acoustic nucleus, superior olive, magnocellular and principal nucleus of the torus semicircularis: ¯xDxSxC. These effects appear to be related to the reproductive state and to advertisement call stimulation.

  2. (b)

    Label uptake by reticular nucleus, interpeduncular nucleus and male habenula and amygdala: ¯xDxSxC. These effects are thought to be caused by arousal.

  3. (c)

    Label uptake by laminar nucleus of the torus semicircularis, lateral thalamic nucleus, corpus geniculatum laterale/nucleus Bellonci, dorsomedial pallium, striatum: ¯xSxDxC. These effects may be induced by advertisement call perception and released motor responses.


We assume that these identified areas of altered functional metabolic brain activity play an important role in the acoustic communication system of anurans.


Acoustic Communication Advertisement Call Torus Semicircularis Sound Amplitude Interpeduncular Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.







corpus geniculatum laterale/nucleus Bellonci


dorsomedial pallium


central gray of rhombencephalon




hypothalamic nucleus


lateral pallium


lateral thalamic nucleus


medial pallium


medial septal nucleus


nucleus dorsalis nervi octavi


nucleus interpeduncularis


nucleus laminaris of the Torus semicircularis


nucleus magnocellularis and principalis of the Torus semicircularis


nucleus reticularis superior


oliva superior


tectum opticum


area preoptica


posterior thalamic nucleus


ventrolateral striatum and ventrolateral septum


ventral tegmentum


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aichinger M, Schaller F (1985) Niederschlagsbedingte Aktivitätsmuster von Anuren im tropischen Regenwald. Verh Dtsch Zool Ges 78:248Google Scholar
  2. Aitken PG, Capranica RR (1984) Auditory input to a vocal nucleus in the frogRana pipiens. Exp Brain Res 57:33–39Google Scholar
  3. Brzoska J, Walkowiak W, Schneider H (1977) Acoustic communication in the grass frog (Rana temporaria). J Comp Physiol 118:173–186Google Scholar
  4. Capranica RR (1976) Morphology and physiology of the auditory system. In: Llinas R, Precht W (eds) Frog neurobiology. Springer, Berlin Heidelberg New York, pp 551–576Google Scholar
  5. Demski LS (1984) The evolution of neuroanatomical substrates of reproductive behavior: sex steroid and LHRH- specific pathways including the terminal nerve. Am Zool 24:809–830Google Scholar
  6. Ewert JP, Burghagen H, Schürg-Pfeiffer E (1983) Neuroethological analysis of the innate mechanism for prey catching behavior in toads. In: Ewert JP, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York, pp 413–475Google Scholar
  7. Feng AS (1983) Morphology of neurons in the torus semicircularis of the northern leopard frogRana pipiens. J Morphol 175:253–269Google Scholar
  8. Feng AS, Gerhardt HC, Capranica RR (1976) Sound localization behavior of the green treefrog (Hyla cinerea) and the barking treefrog (Hyla gratiosa). J Comp Physiol 107:241–252Google Scholar
  9. Finkenstädt Th, Ewert J-P (1985a) Glucose utilization in the toad's brain during anesthesia and stimulation of the ascending reticular arousal system. A 14C-2-deoxyglucose study. Naturwissenschaften 77:161Google Scholar
  10. Finkenstädt Th, Ewert J-P (1985b) Mapping of brain activity in mesencephalic and diencephalic structures of toads during presentation of visual key stimuli: a computer assisted analysis of (14C)2DG autoradiographs. J Comp Physiol A 156:433–443Google Scholar
  11. Gallistel CR, Piner CT, Allen TO, Adler NT, Yadin E, Negin M (1982) Computer assisted analysis of 2-DG autoradiographs. Neurosci Biobehav Rev 6:409–422Google Scholar
  12. Gerhardt HC, Rheinlaender J (1980) Accuracy of sound localization in a miniature dendrobatid frog. Naturwissenschaften 67:362Google Scholar
  13. Gonzales-Lima F, Scheich H (1984) Functional activation in the auditory brain of the rat by arousing reticular stimulation: a 2-deoxyglucose study. Brain Res 299:201–241Google Scholar
  14. Gorlick DL, Constantine-Paton M, Kelley DB (1984) A 14C-deoxyglucose autoradiographic investigation of sensory inputs to the optic tectum ofRana pipiens. J Comp Physiol A 154:617–624Google Scholar
  15. Hillery CM (1984) Seasonality of two midbrain auditory responses in the treefrogHyla chrysosalis. Copeia 4:844–852Google Scholar
  16. Hödl W (1983) Rufverhalten und Phonotaxis bei Männchen vonPhyllobates femoralis. Verh Dtsch Zool Ges 77:172Google Scholar
  17. Immelmann K (1983) Einführung in die Verhaltensforschung. Parey, BerlinGoogle Scholar
  18. Katte O, Hoffmann K-P (1980) Direction specific neurons in the pretectum of the frog (Rana esculenta). J Comp Physiol 140:53–57Google Scholar
  19. Kelley DB (1980) Auditory vocal nuclei in the frog brain concentrate sex hormones. Science 207:553–555Google Scholar
  20. Kiclitter E, Ebbesson SOE (1976) Organization of the “nonolfactory” telencephalon. In: Llinas R, Precht W (eds) Frog Neurobiology. Springer, Berlin Heidelberg New York, pp. 945–974Google Scholar
  21. Littlejohn M (1977) Long range acoustic communication in anurans. In: Taylor DH, Guttmann SJ (eds) The reproductive biology of amphibians. Plenum Press, New York, pp. 263–295Google Scholar
  22. Lüddecke H (1974) Ethplogische Untersuchungen zur Fortpflanzung vonPhyllobates palmatus. Dissertation, Universität MainzGoogle Scholar
  23. Mata M, Fink DJ, Gainer H, Smith CD, Davidsen L, Savaki H, Schwartz WJ, Sokoloff L (1980) Activity-dependent energy metabolism in rat posterior pituitary reflects sodium pump activity. J Neurochem 34:213–215Google Scholar
  24. Mohneke R (1982) Coding of simple acoustic stimuli and conspecific calls in anuran auditory midbrain nuclei. Zool Jb Physiol 86:90–140Google Scholar
  25. Mudry KM, Constantine-Paton M, Capranica RR (1977) Auditory sensitivity of the diencephalon of the leopard frog,Rana pipiens pipiens. J Comp Physiol 146:435–447Google Scholar
  26. Mudry KM, Constantine-Paton M, Capranica RR (1980) Evoked auditory activity within the telencephalon of the bullfrog. Brain Res 182:303–311Google Scholar
  27. Neary TJ, Northcutt RG (1983) Nuclear organization of the bullfrog diencephalon: J Comp Neurol 213:262–278Google Scholar
  28. Opdam P, Kemali M, Nieuwenhuys R (1976) Topological analysis of the brain stem of the frogsRana esculenta andR. catesbeiana. J Comp Neurol 165:307–332Google Scholar
  29. Passmore NJ, Capranica RR, Telford SR, Bishop PJ (1984) Phonotaxis in the painted reed frog (Hyperolius marmoratus). J Comp Physiol A 154:189–197Google Scholar
  30. Rheinlaender J, Gerhardt HC, Capranica RR, Yager DD (1979) Accuracy of phonotaxis by the green treefrog (Hylacinerea). J Comp Physiol 133:247–255Google Scholar
  31. Sachs L (1978) Angewandte Statistik. Springer, Berlin Heidelberg New YorkGoogle Scholar
  32. Saju M, Obata K (1981) Stimulus dependent labeling of cultured ganglionic cell with 14C-2-deoxyglucose. Brain Res 212:435–446Google Scholar
  33. Scalia F (1976) The optic pathway of the frog: Nuclear organization and connections. In: Llinas R, Precht W (eds) Frog neurobiology. Springer, Berlin Heidelberg New York, pp. 386–406Google Scholar
  34. Schlüter A (1984) Ökologische Untersuchungen an einem Stillgewässer im tropischen Regenwald von Peru unter besonderer Berücksichtigung der Amphibien. Dissertation, Universität HamburgGoogle Scholar
  35. Schneider H (1982) Phonotaxis bei Weibchen des Kanarischen Laubfrosches. Zool Anz 208:161–174Google Scholar
  36. Sokoloff L (1981) Localization of functional activity in the central nervous system by measurement of glucose utilization with radioactive deoxyglucose. J Cereb Blood Flow and Metab 1:7–36Google Scholar
  37. Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The (14C)-deoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure and normal values in the conscious and anesthetized Albino Rat. J Neurochem 28:897–916Google Scholar
  38. Theurich M, Müller CM, Scheich H (1984) 2-deoxyglucose accumulation parallels extracellularly recorded spike activity in the avian neostriatum. Brain Res 322:157–161Google Scholar
  39. Walkowiak W (1978) Das Antwortverhalten akustischer Neurone im Mittelhirn des Grasfrosches bei Reizung mit arteigenen Rufen. Verh Dtsch Zool Ges 67:180Google Scholar
  40. Walkowiak W (1980) The coding of acoustic signals in the torus semicircularis of the fire-bellied toad and the grass frog: Responses to simple stimuli and conspecific calls. J Comp Physiol 138:131–148Google Scholar
  41. Wells KD (1977): The courtship of frogs. In: Taylor JH, Guttmann SJ (eds) The reproductive biology of amphibians. Plenum Press, New York, pp. 233–263Google Scholar
  42. Wetzel DM, Haerter U, Kelley DB (1985) A proposed neural pathway for vocalization in South African clawed frogs,Xenopus laevis. J Comp Physiol A 157:749–761Google Scholar
  43. Wilczynski W, Capranica RR (1984) The auditory system of anuran amphibians. Progr Neurobiol 22:1–38Google Scholar
  44. Zimmermann E (1983) Das Züchten von Terrarientieren. Frankh'sche Verlagsbuchhandlung, StuttgartGoogle Scholar
  45. Zimmermann E (1985) Verhaltensphysiologische Studien zur akustischen Kommunikation sowie histoautoradiografische Untersuchungen zum Einfluß akustischer Stimulationen auf den Glykokonjugatstoffwechsel im ZNS neotropischer Pfeilgiftfrösche (Phyllobates tricolor, Dendrobatidae, Anura). Dissertation, Universität HohenheimGoogle Scholar
  46. Zimmermann E, Zimmermann H (1982) Soziale Interaktionen, Brutpflege und Zucht des PfeilgiftfroschesDendrobates histrionicus. Salamandra 18:150–167Google Scholar
  47. Zimmermann E, Zimmermann H (1986) Zur Evolution akustischer Signale bei Pfeilgiftfröschen. Verh Dtsch Zool Ges 79:194Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • E. Zimmermann
    • 1
  • H. Rahmann
    • 1
  1. 1.Zoologisches InstitutUniversität Stuttgart-HohenheimStuttgart 70Federal Republic of Germany

Personalised recommendations