Journal of comparative physiology

, Volume 141, Issue 1, pp 53–65 | Cite as

The sensitivity of receptors in the posterior median eye of the nocturnal spider,Dinopis

  • Simon Laughlin
  • A. David Blest
  • Sally Stowe
Article

Summary

  1. 1.

    Intracellular and extracellular (ERG) recordings were made of receptor responses in the posterior median eye of the nocturnal spiderDinopis subrufus. These are among the largest single lens eyes described among the arthropods and are used during prey capture at night.

     
  2. 2.

    The receptor potential is a depolarising wave, typical of the responses recorded from other spiders, and from rhabdomeric photoreceptors in general. By comparison with other spiders, the receptor responses are slow in time course. Large (4–12 mV) discrete potentials are seen at very low intensities. The evidence suggests that bumps are responses to single photons. If this is the case the quantum capture efficiency for receptors shown to be in their diurnal state of photoreceptive membrane depletion is 7%, measured relative to photons incident on the cornea.

     
  3. 3.

    Large responses to single photons and the known light gathering capacity of the lens (Blest and Land, 1977) make individual dark adapted photoreceptors very sensitive. A corneal flux of 5×105 photons·cm−2·s−1 produces an initial responses of half maximal amplitude. This corresponds to an intensity midway between starlight and moonlight under clear sky conditions. 2×105 more light is required to produce the same response in the diurnal jumping spiderPlexippus (Hardie and Duelli, 1978).

     
  4. 4.

    The spectral sensitivities of single photoreceptors are almost identical to that of the massed receptor response (ERG), and this indicates a retina dominated by photoreceptors containing a single 517 nm rhodopsin. UV sensitivity is depressed by selective attenuation in the lens matrix.

     
  5. 5.

    The mean receptor angular sensitivity function has a half-width of 2.3°, larger than expected from the optical data, but still sufficient for the resolution of spatial detail whose fineness matches the receptor mosaic.

     
  6. 6.

    ERG recordings fail to detect the sensitivity shifts that should be associated with the daily cycle of photoreceptive membrane (Blest, 1978). Perhaps such shifts may still exist because we find that our test lights block the synthetic phase of photoreceptive membrane turnover.

     
  7. 7.

    By comparison with vertebrate rods and cones,Dinopis photoreceptors exhibit the following properties of a scotopic system: large discrete responses to single photons, a slow time course of response, the possibility of electrical coupling between receptors and a spectral sensitivity in the blue/green. The resolving power ofDinopis retina is inferior to human rod vision at the same intensities, as expected of a smaller eye.

     

Abbreviations

p.m.eye

posterior median eye

p.l.eye

posterior lateral eye

PAQ50

number of peak axial photons required to produce a half maximal response

ERG

extracellularly recorded electroretinogram

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Austin, A.D., Blest, A.D.: The biology of two Australian species of dinopid spider. J. Zool. (London)189, 145–156 (1979)Google Scholar
  2. Autrum, H.: Die Belichtungpotentiale und das Sehen der Insekten (Untersuchungen anCalliphora undDixippus). Z. Vergl. Physiol.32, 176–227 (1950)Google Scholar
  3. Barlow, R.B., Kaplan, E.: Properties of visual cells in the lateral eye ofLimulus in situ. Intracellular recordings. J. Gen. Physiol.69, 203–220 (1977)Google Scholar
  4. Baylor, D.A., Hodgkin, A.L.: Changes in time scale and sensitivity in turtle photoreceptors. J. Physiol. (London)242. 729–758 (1974)Google Scholar
  5. Baylor, D.A., Lamb, T.D., Yau, K.-W.: Responses of retinal rods to single photons. J. Physiol. (London)288, 613–634 (1979)Google Scholar
  6. Blest, A.D.: The rapid synthesis and destruction of photoreceptor membrane by a dinopid spider: a daily cycle. Proc. R. Soc. (London), Ser. B200, 463–483 (1978)Google Scholar
  7. Blest, A.D., Day, W.A.: The rhabdomere organisation of some nocturnal pisaurid spiders in light and darkness. Phil. Trans. R. Soc. (London), Ser. B283, 1–23 (1978)Google Scholar
  8. Blest, A.D., Land, M.F.: The physiological optics ofDinopis subrufus L. Koch: a fish-lens in a spider. Proc. R. Soc. (London), Ser. B196, 197–222 (1977)Google Scholar
  9. Blest, A.D., Williams, D.S., Kao, L.: The posterior median eyes of the dinopid spiderMenneus. Cell Tissue Res.211, 391–403 (1980)Google Scholar
  10. Burkhardt, D., Streck, P.: Das Sehfeld einzelner Sehzellen: eine Richtigstellung. Z. Vergl. Physiol.51, 151–152 (1965)Google Scholar
  11. Carricaburu, P.: Dioptrique oculaire du scorpionAndroctonus australis. Vision Res.8, 1067–1072 (1968)Google Scholar
  12. DeVoe, R.D.: Dual sensitivities of cells in wolf-spider eyes at ultraviolet and visible wavelengths of light. J. Gen. Physiol.59, 247–269 (1972)Google Scholar
  13. DeVoe, R.D.: Ultraviolet and green receptors in principal eyes of jumping spiders. J. Gen. Physiol.66, 193–207 (1975)Google Scholar
  14. DeVoe, R.D., Small, R.J.W., Zvargulis, J.E.: Spectral sensitivities of wolf-spider eyes. J. Gen. Physiol.54, 1–32 (1969)Google Scholar
  15. Dixon, E.R.: Spectral distribution of Australian daylight. J. Opt. Soc. Am.68, 437–449 (1978)Google Scholar
  16. Dodge, F.A., Knight, B.W., Toyoda, J.: Voltage noise inLimulus cells. Science160, 88–90 (1968)Google Scholar
  17. Fain, G.L.: Quantum sensitivity of rods in the toad retina. Science187, 838–841 (1975)Google Scholar
  18. Fleissner, G.: The absolute sensitivity of the median and lateral eyes of the scorpion,Androctonus australis L. J. Comp. Physiol.118, 109–120 (1977)Google Scholar
  19. Fuortes, M.G.F., Hodgkin, A.L.: Changes in the time scale and sensitivity in the ommatidia ofLimulus. J. Physiol. (London)172, 239–263 (1964)Google Scholar
  20. Fuortes, M.G.F., O'Bryan, P.M.: Generator potentials in vertebrate photoreceptors. In: Handbook of sensory physiology, Vol. VII/2, Fuortes, M.G.F. (ed.), pp. 279–320. Berlin, Heidelberg, New York: Springer 1972Google Scholar
  21. Gribakin, F.G., Govardovskii, V.I.: The role of the photoreceptor membrane in photoreceptor optics. In: Receptor optics. Snyder, A.W., Menzel, R. (eds.), pp. 215–236. Berlin, Heidelberg, New York: Springer 1975Google Scholar
  22. Hardie, R.C., Duelli, P.: Properties of single cells in posterior lateral eyes of jumping spiders. Z. Naturforsch.33 c, 156–158 (1978)Google Scholar
  23. Horridge, G.A.: The separation of visual axes in apposition compound eyes. Proc. R. Soc. (London), Ser. B285, 1–59 (1978)Google Scholar
  24. Horridge, G.A., Giddings, C., Stange, G.: The superposition eye of the skipper butterfly. Proc. R. Soc. (London), Ser. B182, 457–495 (1972)Google Scholar
  25. Horridge, G.A., Mimura, K., Hardie, R.C.: Fly photoreceptors III. Angular sensitivity as a function of wavelength and the limits of resolution. Proc. R. Soc. (London), Ser. B194, 151–177 (1976)Google Scholar
  26. Itaya, S.K.: Rhabdom changes in the shrimp,Palaemonetes. Cell Tissue Res.166, 265–273 (1976)Google Scholar
  27. Kirschfeld, K.: The absolute sensitivity of lens and compound eyes. Z. Naturforsch.29c, 592–596 (1974)Google Scholar
  28. Kirschfeld, K.: The resolution of lens and compound eyes. In: Neural principles in vision. Zettler, F., Weiler, R. (eds.), pp. 354–372. Berlin, Heidelberg, New York: Springer 1976Google Scholar
  29. Kunze, P.: Apposition and superposition eyes. In: Handbook of sensory physiology, Vol. VII/6A. Autrum, H. (ed.), pp. 441–502. Berlin, Heidelberg, New York: Springer 1979Google Scholar
  30. Land, M.F.: Structure of the retina of the principle eyes of jumping spiders (Salticidae, Dendryphantinae) in relation to visual optics. J. Exp. Biol.51, 443–470 (1969)Google Scholar
  31. Laughlin, S.B.: The sensitivities of dragonfly photoreceptors and the voltage gain of transduction. J. Comp. Physiol.111, 221–247 (1976)Google Scholar
  32. Laughlin, S.B.: Neural principles in the peripheral visual systems of invertebrates. In: Handbook of sensory physiology, Vol. VII/6B. Autrum, H. (ed.), pp. 133–280. Berlin, Heidelberg, New York: Springer 1980Google Scholar
  33. Lillywhite, P.G.: Single photon signals and transduction in an insect eye. J. Comp. Physiol.122, 189–200 (1977)Google Scholar
  34. Lillywhite, P.G.: Coupling between locust photoreceptors revealed by a study of quantum bumps. J. Comp. Physiol.125, 13–27 (1978)Google Scholar
  35. Machan, L.: Spectral sensitivity of the scorpion eyes and the possible role of shielding pigment effect. J. Exp. Biol.49, 95–105 (1968)Google Scholar
  36. Melamed, J., Trujillo-Cenóz, O.: The fine structure of the visual system ofLycosa (Araneae: Lycosidae). I. Retina and optic nerve. Z. Zellforsch.74, 12–31 (1966)Google Scholar
  37. Munz, F.W., McFarland, W.N.: Evolutionary adaptations of fishes to the photic environment. In: Handbook of sensory physiology, Vol. VII/5. Crescitelli, F. (ed.), pp. 193–274. Berlin, Heidelberg, New York: Springer 1977Google Scholar
  38. Nässei, D.R., Waterman, T.H.: Massive, diurnally modulated photoreceptor membrane turnover in crab dark and light adaptation. J. Comp. Physiol.,131, 205–216 (1979)Google Scholar
  39. Owen, D.B.: Handbook of statistical tables. New York: Addison-Wesley 1962Google Scholar
  40. Pirenne, M.H.: Chapts.1, 9 and 11. In: The eye, Vol. 2. Davson, H. (ed.). New York, London: Academic Press 1962Google Scholar
  41. Robinson, M.H., Robinson, B.: The predatory behaviour of the ogre-faced spiderDinopis longipes F. (Araneae: Dinopidae). Am. Midi. Nat.85, 85–96 (1971)Google Scholar
  42. Rose, A.: Vision, Human and Electronic. New York, London: Plenum Press 1972Google Scholar
  43. Rossel, S.: Regional differences in photoreceptor performance in the eye of the praying mantis. J. Comp. Physiol.131, 95–112 (1979)Google Scholar
  44. Schliwa, M., Fleissner, G.: Arhabdomeric cells of the median eye retinae of scorpions. I. Fine structural analysis. J. Comp. Physiol.130, 265–270 (1979)Google Scholar
  45. Schliwa, M., Fleissner, G.: The lateral eyes of the scorpion,Androctonus australis. Cell Tissue Res.206, 95–114 (1980)Google Scholar
  46. Shaw, S.R.: Polarised light reception and receptor interaction in arthropod compound eyes. Ph. D. Thesis, University of St. Andrews (1968)Google Scholar
  47. Snyder, A.W.: Acuity of compound eyes: Physical limitations and design. J. Comp. Physiol.116, 161–182 (1977)Google Scholar
  48. Snyder, A.W., Stavenga, D.G., Laughlin, S.B.: Spatial information capacity of compound eyes. J. Comp. Physiol.116, 183–207 (1977)Google Scholar
  49. Srinivasan, M.V., Bernard, G.D.: The effect of motion on visual acuity in the compound eye: a theoretical analysis. Vision Res.15, 515–525 (1975)Google Scholar
  50. Stowe, S.: Rapid synthesis of photoreceptor membrane and assembly of new microvilli in a crab at dusk. Cell Tissue Res.211, 419–440 (1980)Google Scholar
  51. Whittle, A.C.: Reticular specialisations in photoreceptors: a review. Zool. Scripta5, 191–206 (1976)Google Scholar
  52. Yamashita, S., Tateda, H.: Spectral sensitivities of jumping spider eyes. J. Comp. Physiol.105, 29–41 (1976)Google Scholar
  53. Yeandle, S.: Evidence of quantized slow potentials in the eye ofLimulus. Am. J. Ophthalmol.46, 82–87 (1958)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Simon Laughlin
    • 1
  • A. David Blest
    • 1
  • Sally Stowe
    • 1
  1. 1.Department of Neurobiology. Research School of Biological SciencesAustralian National UniversityCanberra CityAustralia

Personalised recommendations