Journal of Applied Electrochemistry

, Volume 10, Issue 6, pp 703–708 | Cite as

Influence of chemical composition and temperature on the passivation of some stainless steels and nickel-based alloys in sulphuric acid

  • K. Vu Quang
  • M. Traisnel
  • P. Damie
  • J. -C. Bavay


The critical current densities for passivation of a number of industrial stainless steels and nickel-based alloys have been measured in 20% H2SO4 at temperatures from 30 to 103° C (boiling). The critical current decreases — and then the aptitude for passivation increases — as the chromium and molybdenum contents of the alloys are increased; molybdenum was about three times as effective as chromium. Increasing the temperature extends the range of active dissolution of the alloys and markedly increases the critical current density for passivation. The effect is least severe for the alloys of high Cr and Mo content, but even for these, spontaneous passivation does not take place above 50° C. The logarithm of the active current density varies linearly with the reciprocal of absolute temperature over limited ranges. Apparent activation energies have been measured and proposals for the rate-determining factors in the mechanisms are outlined on the basis of these measurements.


Physical Chemistry Chromium Stainless Steel Activation Energy Molybdenum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. L. Crolet,Aciers Spéciaux 42 (1978) 21.Google Scholar
  2. [2]
    R. L. Cowan and C. S. Tedmon, ‘Advances in Corrosion Science and Technology’, Vol. 3, Plenum Press, New York (1973) p. 308.Google Scholar
  3. [3]
    M. S. El Basiouny and S. Haruyama,Corrosion Sci. 16 (1976) 529.Google Scholar
  4. [4]
    R. Machin and P. Guha,Werkstoffe und Korrosion 25 (1974) 40.Google Scholar
  5. [5]
    R. B. Leonard,Corrosion 24 (1969) 301.Google Scholar
  6. [6]
    J. M. Defranoux,Aciers Spéciaux 31 (1975) 8.Google Scholar
  7. [7]
    J. C. Charbonnier,Métaux-Corrosion-Industrie 598 (1975) 1–24.Google Scholar
  8. [8]
    G. Hersleb and W. Schwenk,Werkstoffe und Korrosion 18 (1967) 521.Google Scholar
  9. [9]
    M. B. Rockel,Corrosion 29 (1973) 393.Google Scholar
  10. [10]
    K. Vu Quang, F. Bourelier, E. Chassaing and J. Montuelle,Mém. Sci. Rev. Mét. 70 (1973) 417.Google Scholar
  11. [11]
    B. L. Trout and R. D. Daniels,Corrosion 28 (1972) 331.Google Scholar
  12. [12]
    M. Turner, G. E. Thompson and P. A. Brook,Corrosion Sci. 13 (1973) 985.Google Scholar
  13. [13]
    G. Gilli, P. Borea, F. Zucchi and G. Trabanelli,Corrosion Sci. 9 (1969) 673.Google Scholar
  14. [14]
    J. L. Crolet, J. Seraphin and R. Tricot,Mém. Sci. Rev. Mét. 74 (1977) 281.Google Scholar
  15. [15]
    M. Kesten and H. G. Feller,Electrochimica Acta 16 (1971) 763.Google Scholar

Copyright information

© Chapman and Hall Ltd 1980

Authors and Affiliations

  • K. Vu Quang
    • 1
  • M. Traisnel
    • 2
  • P. Damie
    • 2
  • J. -C. Bavay
    • 2
  1. 1.Centre d'Etudes de Chimie Métallurgique, C.N.R.S.VitryFrance
  2. 2.Groupe d'Etude de la CorrosionUniversité de Lille IVilleneuve d'AscqFrance

Personalised recommendations