Journal of Comparative Physiology A

, Volume 157, Issue 1, pp 47–55 | Cite as

Binocularly driven neurons in the rostral part of the frog optic tectum

  • F. Gaillard
Article

Summary

Receptive field (RF) properties of binocular neurons lying in the rostral part of the optic tectum of the frog (Rana esculenta) were studied electrophysiologically using conventional visual stimuli. They were classified into five groups: group 1 neurons have indefinite RF; group 2 neurons are total-field (T6) neurons; group 3 neurons have RFs covering a quadrant of the frontal visual field; group 4 neurons resemble T 1(1) and T 1(3) subclasses described earlier; and finally group 5 neurons look like small-field binocular neurons and are called T7(B). Moreover, RF disparity measurements conducted in all groups suggest that group 4 neurons support the estimation of binocular distance. This problem is discussed.

Keywords

Visual Field Visual Stimulus Receptive Field Optic Tectum Rostral Part 

Abbreviation

RF

receptive field

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barlow HD, Blakemore C, Pettigrew JD (1967) The neural mechanism of binocular depth discrimination. J Physiol (Lond) 193:327–342Google Scholar
  2. Brown WT, Ingle DJ (1973) Receptive field changes produced in frog thalamic units by lesion of the optic tectum. Brain Res 69:405–409Google Scholar
  3. Brown WT, Marks WB (1977) Unit responses in the frog's caudal thalamus. Brain Behav Evol 14:274–297Google Scholar
  4. Canella F (1936) Quelques recherches sur la vision monoculaire. CR Soc Biol Paris 122:1221–1224Google Scholar
  5. Choudhury BP (1980) Binocular depth vision in the rabbit. Exp Neurol 68:453–464Google Scholar
  6. Collett TS (1977) Stereopsis in toads. Nature 267:349–351Google Scholar
  7. Cordier-Picouet MJ (1981) Le développement du systéme rétinotectal ipsilatéral chezAlytes obstetricans (Amphibien, Anoure). CR Acad Sci Paris 293, III: 195–200Google Scholar
  8. Dieringer N, Precht W (1982) Compensatory head and eye movements in the frog and their contribution to stabilization of gaze. Exp Brain Res 47:394–406Google Scholar
  9. Ewert JP (1971) Single unit response of the toad's (Bufo americanus) caudal thalamus to visual objects. Z Vergl Physiol 74:81–102Google Scholar
  10. Ewert JP (1980) Prey-catching sequence controlled by a multiple action system in toads. Neurosci Lett, Suppl. 5:S28Google Scholar
  11. Ewert JP (1984) Tectal mechanisms that underlie prey-catching and avoidance behaviors in toads. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum Press, New York, pp 247–416Google Scholar
  12. Ewert JP, Borchers HW (1971) Reaktionscharakteristik von Neuronen aus dem Tectum und Subtectum der ErdkröteBufo bufo (L). Z Vergl Physiol 71:165–189Google Scholar
  13. Finch DJ, Collett TS (1983) Small-field, binocular neurons in the superficial layers of the frog optic tectum. Proc R Soc Lond 217 B:491–497Google Scholar
  14. Fite KV (1969) Single-unit analysis of binocular neurons in the frog optic tectum. Exp Neurol 24:475–486Google Scholar
  15. Fite KV (1973) The visual fields of the frogs and toads. A comparative study. Behav Biol 9:707–718Google Scholar
  16. Fite KV, Rego M (1974) Binocular vision and prey-catching behavior in the leopard frogRana pipiens. Neurosciences Meeting, St Louis, MissouriGoogle Scholar
  17. Fite KV, Scalia F (1976) Central visual pathways in the frog. In: Fite KV (ed) The amphibian visual system. A multidisciplinary approach. Academic Press, New York, pp 87–118Google Scholar
  18. Gaillard F (1983) Commentaires sur la topographie de la projection isthmo-tectale croisée chez la grenouille. CR Acad Sci Paris 296 III: 865–870Google Scholar
  19. Gaillard F (1984a) Vision binoculaire chez la grenouille. Propriétés fonctionnelles, caractéristiques anatomiques et intégration neuronale des divers systèmes rétino-tectaux. Thèse Doctorat d'Etat, PoitiersGoogle Scholar
  20. Gaillard F (1984b) Neurones monoculaires à petit champ récepteur dans le tectum optique de la grenouille: Propriétés analytiques et problèmes de classification. J Physiol (Paris) 79:139–144Google Scholar
  21. Gaillard F, Galand G (1977) New ipsilateral visual units in the frog tectum. Brain Res 136:351–354Google Scholar
  22. Gaillard F, Galand G (1979) Diencephalic binocular wide field neurons in the frog. Exp Brain Res 34:511–520Google Scholar
  23. Gaillard F, Galand G (1980a) Les projections visuelles rétinotectales accessoires des anoures sont-elles toutes topiquement organisées? CR Acad Sci Paris 290 D:601–604Google Scholar
  24. Gaillard F, Galand G (1980b) A possible neurophysiological basis for depth perception in frogs: Existence of a horopter surface. J Physiol (Paris) 76:123–127Google Scholar
  25. Gaillard F, Galand G (1981) Mapping studies of the tectal representation of the frog binocular visual field. A problem of methodology. Exp Brain Res 44:187–194Google Scholar
  26. Gaze RM, Jacobson M (1962) The projection of the binocular visual field on the optic tecta of the frog. Q J Exp Physiol 47:273–280Google Scholar
  27. Grobstein P, Comer C, Holliday M, Archer SM (1978) A crossed isthmotectal projection inRana pipiens and its involvement in the ipsilateral visuotectal projection. Brain Res 156:117–123Google Scholar
  28. Grobstein P, Comer C, Kostyk S (1980) The potential binocular field and its tectal representation inRana pipiens. J Comp Neurol 190:175–185Google Scholar
  29. Gruberg ER, Lettvin JY (1980) Anatomy and physiology of a binocular system in the frogRana pipiens. Brain Res 192:313–325Google Scholar
  30. Gruberg ER, Udin SB (1978) Topographic projections between the nucleus isthmi and the tectum of the frogRana pipiens. J Comp Neurol 179:487–500Google Scholar
  31. Grüsser OJ, Grüsser-Cornehls U (1976) Neurophysiology of the anuran visual system. In: Llinás R, Precht W (eds) Frog neurobiology: A handbook. Springer, Berlin Heidelberg New York, pp 297–385Google Scholar
  32. Ingle DJ (1968) Visual releasers of prey-catching behavior in frogs and toads. Brain Behav Evol 1:500–518Google Scholar
  33. Ingle DJ (1970) Visuomotor functions of the frog optic tectum. Brain Behav Evol 3:57–71Google Scholar
  34. Ingle DJ (1972) Depth vision in monocular frogs. Psychon Sci 29:37–38Google Scholar
  35. Ingle DJ (1976) Spatial vision in anurans. In: Fite KV (ed) The amphibian visual system. A multidisciplinary approach. Academic Press, New York, pp 119–140Google Scholar
  36. Jordan M, Luthardt G, Meyer-Naujocks C, Roth G (1980) The role of eye accommodation in the depth perception of common toads. Z Naturforsch 35:851–852Google Scholar
  37. Keating MJ, Gaze RM (1970) The ipsilateral retinotectal pathway in the frog. Q J Exp Physiol 55:284–292Google Scholar
  38. Khabibullin RD, Stepanov AS, Kashina ND (1976) Investigation concernant l'efficacité de la capture d'une proie par des grenouilles intactes ou monoculaires (Rana temporaria). Translated from Russian. Zool Zh 55:1579–1582Google Scholar
  39. Lázàr G (1978) Application on cobalt-filling technique to show retinal projections in the frog. Neuroscience 3:725–736Google Scholar
  40. Lescure J (1965) L'alimentation et le comportement de prédation chezBufo bufo L. Thése Doctorat d'Etat, ParisGoogle Scholar
  41. Levine RL (1980) An autoradiographic study of the retinal projection inXenopus laevis with comparisons toRana. J Comp Neurol 189:1–29Google Scholar
  42. Luthardt-Laimer G (1983) Distance estimation in binocular and monocular salamanders. Z Tierpsychol 63:233–240Google Scholar
  43. Maturana HR, Lettvin JY, McCulloch WS, Pitts WH (1960) Anatomy and physiology of vision in the frog (Rana pipiens). J Gen Physiol 43:129–175Google Scholar
  44. Neary JT (1976) An autoradiographic study of the retinal projections in some members of ‘archaic’ and ‘advanced’ anuran families. Anat Rec 184:487Google Scholar
  45. Pettigrew JD (1972) The neurophysiology of binocular vision. Sci Am 227:84–95Google Scholar
  46. Pettigrew JD, Konishi M (1976) Neurons selective for orientation and binocular disparity in the visual wulst of the barn owl (Tyto alba). Science 193:675–678Google Scholar
  47. Peyrichoux J, Repérant J, Weidner C (1978) Les centres visuels primaires chez la grenouille (Rana esculenta L.) et le probléme des projections ipsilatérales. CR Acad Sci Paris 287 D:37–40Google Scholar
  48. Picouet MJ, Clairambault P (1976) Une nouvelle voie visuelle chez un amphibien anoure,Discoglossus pictus. CR Acad Sci Paris 282 D:2195–2198Google Scholar
  49. Picouet MJ, Clairambault P (1977) Architecture du systéme visuel deDiscoglossus pictus (Oth). J Hirnforsch 18:401–421Google Scholar
  50. Poggio GF, Fisher B (1977) Binocular interaction and depth sensitivity in the striate and prestriate cortex of the behaving monkey. J Neurophysiol 40:1392–1405Google Scholar
  51. Schneider D (1954) Das Gesichtsfeld und der Fixiervorgang bei einheimischen Anuren. Z Vergl Physiol 36:147–164Google Scholar
  52. Schürg-Pfeiffer E, Ewert JP (1981) Investigation of neurons involved in the analysis of gestalt prey-features in the frog,Rana temporaria. J Comp Physiol 141:139–152Google Scholar
  53. Skarf B, Jacobson M (1974) Development of binocularly driven single units in frogs raised with asymmetrical visual stimulation. Exp Neurol 42:669–686Google Scholar
  54. Steinbach MJ, Money KE (1973) Eye movements in the owl. Vision Res 13:889–891Google Scholar
  55. Stelzner DJ, Bohn RC, Strauss J (1981) Expansion of the ipsilateral retinal projection in the frog brain during optic nerve regeneration: Sequence of reinnervation and retinotopic organization. J Comp Neurol 201:299–317Google Scholar
  56. Van Hof MW, Steele Russell I (1977) Binocular vision in the rabbit. Physiol Behav 19:121–128Google Scholar
  57. Van Sluyters RC, Stewart DL (1974) Binocular neurons of the rabbit's visual cortex: Receptive field characteristics. Exp Brain Res 19:166–195Google Scholar
  58. Witpaard J (1976) Frog's vision. Nat thesis, LeidenkGoogle Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • F. Gaillard
    • 1
  1. 1.Faculté des SciencesLaboratoire de Neurophysiologie et Psychophysiologie, UA CNRS 290PoitiersFrance

Personalised recommendations