Journal of Comparative Physiology A

, Volume 165, Issue 5, pp 643–649 | Cite as

Multisensory control of eye-stalk orientation in space: crabs from different habitats rely on different senses

  • Hans -Ortwin Nalbach
  • Jochen Zeil
  • Luise Forzin
Article

Summary

  1. 1.

    We recorded compensatory eye stalk movements in response to pitch and roll stimulation of the visual, statocyst, and leg-proprioceptive systems in different species of crabs (Carcinus maenas, Heloecius cordiformis, Pachygrapsus marmoratus) (Fig. 2).

     
  2. 2.

    The relative contribution of visual, statocyst and leg-proprioceptive inputs to eye stabilization in space varies greatly among different species (Fig. 3).

     
  3. 3.

    We suggest that for stabilizing the eyes in space, the contribution of various sensory inputs in different species of crabs correspond to the availability of cues in their habitat. Semiterrestrial crabs living in a habitat with well defined and predictable visual geometry stabilize their eye stalks mainly by visual cues. Crabs living on solid substrate make strong use of leg proprioceptive input. Swimming crabs, and other predominantly aquatic crabs, rely mainly on their statocysts.

     

Keywords

Sensory Input Solid Substrate Proprioceptive Input Swimming Crab Roll Stimulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balss H, Buddenbrock W von, Gruner H-E, Korscheit E (1940–1961) Bronn's Klassen und Ordnungen des Tierreichs. 5. Band: Arthropoda, Abteilung I: Crustacea, 7. Buch: Decapoda. 2. Aufl, Akad Verlagsges Geest und Portig, LeipzigGoogle Scholar
  2. Barnes WJP, Horridge GA (1969) Two-dimensional records of the eyecup movements of the crabCarcinus. J Exp Biol 50:673–682Google Scholar
  3. Buddenbrock W von (1914) Über die Orientierung der Krebse im Raum. Zool Jb Abt Allg Zool Physiol 34:479–514Google Scholar
  4. Clark GP (1896) On the relation of the otocysts to equilibrium phenomena inGelasimus pugilator andPlatyonichus ocellatus. J Physiol (Lond) 19:327–343Google Scholar
  5. Cowles RP (1908) Habits, reactions and associations inOcypode arenaria. Pap Tortugas Lab Carnegie Inst Washington 2:1–41Google Scholar
  6. Crothers JH (1968) The biology of the shore crab,Carcinus maenas (L.) II. The life of the adult crab. Field Studies 2:579–614Google Scholar
  7. Dijkgraaf S (1956) Über die kompensatorischen Augenstielbewegungen bei Brachyuren. Puppl Staz Zool Napoli 18:341–358Google Scholar
  8. Fay RR (1973) Multisensory interaction in control of eye-stalk rotation response in the crayfish (Procambarus clarkii). J Comp Physiol Psychol 84:527–533Google Scholar
  9. Fraser PJ (1977) How morphology of semicircular canals affects transduction, as shown by response characteristics of statocyst interneurons in the crabCarcinus maenas (L.). J Comp Physiol 115:135–145Google Scholar
  10. Fraser PJ (1981) Semicircular canal morphology and function in crabs. In: T Gualtierotti (ed) Vestibular function and morphology. Springer, Berlin Heidelberg New York, pp 206–226Google Scholar
  11. Griffin DJG (1968) Social and maintenance behaviour of two Australian ocypodid crabs (Crustacea: Brachyura). J Zool Lond 156:291–305Google Scholar
  12. Hiatt RW (1948) Biology of the lined shore crab,Pachygrapsus crassipes Randall. Pacific Sci 2:135–213Google Scholar
  13. Horridge GA (1966) Direct response of the crabCarcinus to the movement of the sun. J Exp Biol 44:275–283Google Scholar
  14. Janse C (1980) The function of statolith-hair and free-hook hair receptors in the statocyst of the crab,Scylla serrata. J Comp Physiol 137:51–62Google Scholar
  15. Nalbach H-O (1989) Three temporal frequency channels constitute the dynamics of the optokinetic system of the crab,Carcinus maenas (L.). Biol Cybern 61:59–70Google Scholar
  16. Nalbach H-O, Nalbach G (1987) Distribution of optokinetic sensitivity over the eye of crabs: its relation to habitat and possible role in flow-field analysis. J Comp Physiol A 160:127–135Google Scholar
  17. Nalbach H-O, Nalbach G, Forzin L (1989) Visual control of eye-stalk orientation in crabs: Vertical optokinetics, visual fixation of the horizon, and eye design. J Comp Physiol A 165:577–587Google Scholar
  18. Neil DM (1982) Compensatory eye movements. In: Sandeman DC, Atwood HL (eds) The biology of Crustacea 4: neural integration and behavior. Academic Press, New York London, pp 133–163Google Scholar
  19. Neil DM (1985) Multisensory interactions in the crustacean equilibrium system. In: Barnes WJP, Gladden MH (eds) Feedback and motor control in invertebrates and vertebrates. Croom Helm, London, pp 277–298Google Scholar
  20. Sandeman DC (1983) The balance and visual systems of the swimming crab: their morphology and interaction. Fortschr Zool 28:213–229Google Scholar
  21. Sandeman DC, Erber J, Kien J (1975) Optokinetic eye movements in the crabCarcinus maenas. Eye torque. J Comp Physiol 101:243–258Google Scholar
  22. Sandeman DC, Okajima A (1973) Statocyst-induced eye movements in the crabScylla serrata. III. The anatomical projections of sensory and motor neurons and the response of the motor neurons. J Exp Biol 59:17–38Google Scholar
  23. Schöne H (1954) Statozystenfunktion und statische Lageorientierung bei dekapoden Krebsen. Z Vergl Physiol 36:241–260Google Scholar
  24. Schöne H, Neil DM, Stein A, Carlstead MK (1976) Reactions of the spiny lobster,Palinurus vulgaris to substrate tiltI. J Comp Physiol 107:113–128Google Scholar
  25. Schöne H, Neil DM, Scapini F (1978) Substrate orientation in the spiny lobster. V. The influence of substrate contact on gravity orientation. J Comp Physiol 126:293–296Google Scholar
  26. Stein A, Schöne H (1972) Über das Zusammenspiel von Schwereorientierung und Orientierung zur Unterlage beim Flußkrebs. Verh Dtsch Zool Ges 65:225–229Google Scholar
  27. Varjú D, Sandeman DC (1982) Eye movements of the crabLeptograpsus variegatus elicited by imposed leg movements. J Exp Biol 98:151–173Google Scholar
  28. Zeil J, Nalbach G, Nalbach H-O (1986) Eyes, eye stalks and the visual world of semi-terrestrial crabs. J Comp Physiol A 159:801–811Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Hans -Ortwin Nalbach
    • 1
  • Jochen Zeil
    • 1
  • Luise Forzin
    • 1
  1. 1.Lehrstuhl für BiokybernetikUniversität TübingenTübingenFederal Republic of Germany

Personalised recommendations