Advertisement

Journal of Applied Electrochemistry

, Volume 11, Issue 2, pp 239–246 | Cite as

Dendritic electrocrystallization and the mechanism of powder formation in the potentiostatic electrodeposition of metals

  • K. I. Popov
  • M. D. Maksimović
  • J. D. Trnjančev
  • M. G. Pavlović
Papers

Abstract

A mechanism for metal powder formation, based on the theories of dendritic growth and nondendritic surface roughness amplification in potentiostatic deposition, is proposed. The mechanism takes into account all those variables recognized in practical systems.

Keywords

Physical Chemistry Surface Roughness Metal Powder Powder Formation Dendritic Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Nomenclature

C0

bulk concentration

Ctip

concentration around the tip of dendrite

D

diffusion coefficient

F

Faraday's constant

h

height of protrusion

hi

initial height for dendritic growth

h0

initial height for nondendritic amplification

I

limiting diffusion current

i

limiting current density

id

current density on the tip of dendrite of height h

i0

exchange current density

N

number of elevated points

n

number of electrons

R

gas constant

r

dendrite tip radius

S

electrode surface area

T

temperature

t

time

ti

induction time

V

molar volume

γ

surface tension

δ

thickness of diffusion layer

η

overpotential

ηc

critical overpotential for powder formation

ηi

critical overpotential for dendrite growth initiation

2.3η0

slope of Tafel line

θ

fraction on flat surface

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. R. Despić and K. I. Popov,Mod. Aspects Electrochem. 7 (1972) 199.Google Scholar
  2. [2]
    O. Kudra and M. E. Lerner,Ukr. Khim. Z. 17 (1951) 890.Google Scholar
  3. [3]
    O. Kudra and E. Gitman, ‘Elektroliticheskoe poluchenie metallicheskieh prorshkov’, Izd. A. N. Ukr. SSR Kiev (1952).Google Scholar
  4. [4]
    K. Hirakoso,Denkikogaku Kyokoishi 3 (1935) 7 (Chem. Abst. 29 1935) 5749u).Google Scholar
  5. [5]
    N. Ibl,Helv. Chim. Acta 37 (1954) 1149.Google Scholar
  6. [6]
    A. R. Despić,Croat. Chim. Acta 42 (1970) 265.Google Scholar
  7. [7]
    J. L. Barton and J. O'M. Bockris,Proc. Roy. Soc. A268 (1972) 485.Google Scholar
  8. [8]
    J. W. Diggle, A. R. Despić and J. O'M. Bockris,J. Electrochem. Soc. 116 (1969) 1503.Google Scholar
  9. [9]
    A. R. Despić, J. W. Diggle and J. O'M. Bockris,ibid 115 (1968) 507.Google Scholar
  10. [10]
    S. I. Krichmar,Elektrokhim.1 (1965) 609.Google Scholar
  11. [11]
    K. I. Popov and A. R. Despić,Bull Soc. Chim., Beograd 36 (1971) 173.Google Scholar
  12. [12]
    A. R. Despić, and M. M. Purenović,J. Electrochem. Soc. 121 (1974) 329.Google Scholar
  13. [13]
    K. I. Popov, I. S. Bośkovic, M. G. Pavlovic and M. D. Maksimović,Bull. Soc. Chim., Beograd 44 (1979) 531.Google Scholar
  14. [14]
    K. I. Popov, M. D. Maksimović, M. G. Pavlović and D. T. Lukić,ibid 10 (1980) 299.Google Scholar
  15. [15]
    K. I. Popov, Lj. M. Djukić, M. G. Pavlović and M. D. Maksimović,J. Appl. Electrochem. 9 (1979) 527.Google Scholar
  16. [16]
    B. E. Mattson and J. O'M. Bockris,Trans. Faraday Soc. 55 (1959) 1586.Google Scholar
  17. [17]
    W. Lorenz,Z. Elektrochem. 58 (1954) 912.Google Scholar
  18. [18]
    Ya. I. Frenkel, ‘Vvedenie v theoriyu metallov’, Gostehizdat, Leningrad, Moskva (1948).Google Scholar

Copyright information

© Chapman and Hall Ltd 1981

Authors and Affiliations

  • K. I. Popov
    • 1
  • M. D. Maksimović
    • 1
  • J. D. Trnjančev
    • 1
  • M. G. Pavlović
    • 2
  1. 1.Faculty of Technology and MetallurgyUniversity of BeogradBeogradYugoslavia
  2. 2.Institute for Electrochemistry ICTMUniversity of BeogradBeogradYugoslavia

Personalised recommendations