Mechanics of Composite Materials

, Volume 21, Issue 4, pp 409–415 | Cite as

Equilibrium of a brittle longitudinal shear crack at a matrix-circular fiber interface

  • V. V. Tvardovskii


Brittle Shear Crack Longitudinal Shear Fiber Interface Longitudinal Shear Crack 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    G. P. Cherepanov, “State of stress in an inhomogeneous plate with cracks,” Izv. Akad. Nauk SSSR, Mekh. Mashinostr., No. 1, 131–137 (1962).Google Scholar
  2. 2.
    F. Erdogan, “Stress distribution in an inhomogeneous elastic plane containing a crack,” Trans. ASME (J. Appl. Mech.), Series E,30, No. 2, 83–87 (1963).Google Scholar
  3. 3.
    A. H. England, “A crack between dissimilar media,” Trans. ASME (J. Appl. Mech.), Ser. E,32, No. 2, 165–168 (1965).Google Scholar
  4. 4.
    J. R. Rice and G. C. Sih, “Plane problems of cracks in dissimilar media,” Trans. ASME (J. Appl. Mech.), Ser. E,32, No. 2, 186–192 (1965).Google Scholar
  5. 5.
    Ya. Dundurs and M. Komninou, “Review of the prospects for interphase crack research,” in: Fracture of Composite Materials [in Russian], Riga, (1979), pp. 78–87.Google Scholar
  6. 6.
    E. Smith, “The extension of circular-arc cracks in antiplane strain deformation,” Int. J. Eng. Sci.,7, No. 9, 973–991 (1969).Google Scholar
  7. 7.
    G. P. Sendeckyj, “Debonding of rigid curvilinear inclusions in longitudinal shear deformation,” Eng. Fract. Mech.,6, No. 1, 33–45 (1974).Google Scholar
  8. 8.
    R. J. Nulsmer and G. P. Sendeckyj, “On the changing order of singularity at a crack tip,” J. Appl. Mech., Dec. 625–630 (1977).Google Scholar
  9. 9.
    L. T. Berezhnitskii, V. V. Panasyuk, and A. M. Sakhnenko, “Antiplane deformation of a body with a rigid curvilinear inclusion and a crack at the interface,” Fiz.-Khim. Mekh. Mater.,17, No. 5, 67–72 (1981).Google Scholar
  10. 10.
    G. A. Vanin, “Longitudinal shear of a multicomponent fibrous medium with defects,” Prikl. Mekh.,13, No. 8, 35–41 (1977).Google Scholar
  11. 11.
    V. D. Kuliev, “Some problems of the branching of a shear crack in a piecewise-homogeneous medium,” Dokl. Akad. Nauk AzSSR, No. 9, 17–21 (1979).Google Scholar
  12. 12.
    G. I. Barenblatt and G. P. Cherepanov, “Brittle longitudinal shear cracks,” Prikl. Mat. Mekh.,25, No. 6, 1110–1119 (1961).Google Scholar
  13. 13.
    F. D. Gakhov, Boundary Value Problems, Pergamon (1966).Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • V. V. Tvardovskii
    • 1
  1. 1.Institute of Solid State PhysicsAcademy of Sciences of the USSRMoscow

Personalised recommendations