Journal of Comparative Physiology A

, Volume 165, Issue 6, pp 719–730 | Cite as

Visual afferences to flight steering muscles controlling optomotor responses of the fly

  • Martin Egelhaaf
Article

Summary

In tethered flying house-flies (Musca domestica) visually induced turning reactions were monitored under open-loop conditions simultaneously with the spike activity of four types of steering muscles (M.b1, M.b2, M.I1, M.III1). Specific behavioral response components are attributed to the activity of particular muscles. Compensatory optomotor turning reactions to large-field image displacements mainly occur when the stimulus pattern oscillates at low frequencies. In contrast, turning responses towards objects are preferentially induced by motion of relatively small stimuli at high oscillation frequencies. The different steering muscles seem to be functionally specialized in that they contribute to the control of these behavioral responses in different ways. The muscles I1, III1 and b2 are preferentially active during small-field motion at high oscillation frequencies. They are much less active during small-field motion at low oscillation frequencies and large-field motion at all oscillation frequencies which were tested. M.b2 is most extreme in this respect. These steering muscles thus mediate mainly turns towards objects. In contrast, M.b1 responds best during large-field motion at low oscillation frequencies and, thus, is appropriate to control compensatory optomotor responses. However, the activity of this muscle is also strongly modulated during small-field motion at high oscillation frequencies and, therefore, may be involved also in the control of turns towards objects. These functional specializations of the different steering muscles in mediating different behavioral response components are related to the properties of two parallel visual pathways that are selectively tuned to large-field and small-field motion, respectively.

Keywords

Oscillation Frequency Spike Activity Stimulus Pattern High Oscillation Frequency Musca Domestica 

Abbreviations

FD (cell)

figure detection (cell)

HS (cell)

horizontal (cell)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bausenwein B, Wolf R, Heisenberg M (1986) Genetic dissection of optomotor behavior inDrosophila melanogaster. Studies on wild-type and the mutant optomotor-blindH31. J Neurogenetics 3:87–109Google Scholar
  2. Collett TS (1980a) Some operating rules for the optomotor system of a hoverfly during voluntary flight. J Comp Physiol 138:271–282Google Scholar
  3. Collett TS (1980b) Angular tracking and the optomotor response. An analysis of visual reflex interaction in a hoverfly. J Comp Physiol 140:145–158Google Scholar
  4. Egelhaaf M (1985a) On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. I. Behavioural constraints imposed on the neuronal network and the role of the optomotor system. Biol Cybern 52:123–140Google Scholar
  5. Egelhaaf M (1985b) On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. II. Figure-Detection Cells, a new class of visual interneurones. Biol Cybern 52:195–209Google Scholar
  6. Egelhaaf M (1985c) On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. III. Possible input circuitries and behavioural significance of the FD-Cells. Biol Cybern 52:267–280Google Scholar
  7. Egelhaaf M (1987) Dynamic properties of two control systems underlying visually guided turning in house-flies. J Comp Physiol A 161:777–783Google Scholar
  8. Egelhaaf M, Hausen K, Reichardt W, Wehrhahn C (1988) Visual course control in flies relies on neuronal computation of object and background motion. Trends Neurosci 11:351–358Google Scholar
  9. Fermi G, Reichardt W (1963) Optomotorische Reaktionen der FliegeMusca domestica. Abhängigkeit der Reaktion von der Wellenlänge, der Geschwindigkeit, dem Kontrast und der mittleren Leuchtdichte bewegter periodischer Muster. Kybernetik 2:15–28Google Scholar
  10. Geiger G, Nässei DR (1982) Visual processing of moving single objects and wide-field patterns in flies: Behavioural analysis after laser-surgical removal of interneurons. Biol Cybern 44:141–149Google Scholar
  11. Götz KG (1964) Optomotorische Untersuchung des visuellen Systems einiger Augenmutanten der FruchtfliegeDrosophila. Kybernetik 2:77–92Google Scholar
  12. Götz KG (1983a) Bewegungssehen und Flugsteuerung bei der FliegeDrosophila. In: Nachtigall W (ed) BIONA report. Akademie der Wissenschaften und der Literatur Mainz, G. Fischer, Mainz Stuttgart New York, pp 21–34Google Scholar
  13. Götz KG (1983b) Genetischer Abbau der visuellen Orientierung beiDrosophila. Verh Dtsch Zool Ges 76:83–99Google Scholar
  14. Götz KG, Hengstenberg B, Biesinger R (1979) Optomotor control of wing beat and body posture inDrosophila. Biol Cybern 35:101–112Google Scholar
  15. Hausen K (1981) Monocular and binocular computation of motion in the lobula plate of the fly. Verh Dtsch Zool Ges 74:49–70Google Scholar
  16. Hausen K (1982a) Motion sensitive interneurons in the optomotor system of the fly. I. The horizontal cells: structure and signals. Biol Cybern 45:143–156Google Scholar
  17. Hausen K (1982b) Motion sensitive interneurons in the optomotor system of the fly. II. The horizontal cells: receptive field organization and response characteristics. Biol Cybern 46:67–79Google Scholar
  18. Hausen K (1984) The lobula-complex of the fly: Structure, function and significance in visual behaviour. In: Ali MA (ed) Photoreception and vision in invertebrates. Plenum Press, New York London, pp 523–559Google Scholar
  19. Hausen K, Egelhaaf M (1989) Neural mechanisms of visual course control in insects. In: Stavenga D, Hardie R (eds) Facets of vision. Springer, Berlin Heidelberg New York, pp 391–424Google Scholar
  20. Hausen K, Wehrhahn C (1983) Microsurgical lesion of horizontal cells changes optomotor yaw responses in the blowflyCalliphora erythrocephala. Proc R Soc Lond B 219:211–216Google Scholar
  21. Hausen K, Wehrhahn C (in press) Neural circuits mediating visual flight in flies. I. Quantitative comparison of neural and behavioural response characteristics.Google Scholar
  22. Hausen K, Wehrhahn C (in press) Neural circuits mediating visual flight in flies. II. Separation of two control systems.Google Scholar
  23. Heide G (1971a) Die Funktion der nicht-fibrillären Flugmuskeln vonCalliphora. Teil 1: Lage, Insertionsstellen und Innervierungsmuster der Muskeln. Zool Jb Physiol 76:87–98Google Scholar
  24. Heide G (1971b) Die Funktion der nicht-fibrillären Flugmuskeln vonCalliphora. Teil II: Muskuläre Mechanismen der Flugsteuerung und ihre nervöse Kontrolle. Zool Jb Physiol 76:99–137Google Scholar
  25. Heide G (1975) Properties of a motor output system involved in the optomotor response in flies. Biol Cybern 20:99–112Google Scholar
  26. Heide G (1983) Neural mechanisms of flight control in Diptera. In: Nachtigall W (ed) BIONA report. Akademie der Wissenschaften und der Literatur Mainz, G. Fischer, Mainz Stuttgart New York, pp 35–52Google Scholar
  27. Heisenberg M, Wolf R (1984) Vision inDrosophila. Springer, Berlin Heidelberg New YorkGoogle Scholar
  28. Heisenberg M, Wolf R (1988) Reafferent control of optomotor yaw torque inDrosophila melanogaster. J Comp Physiol A 163:373–388Google Scholar
  29. Hirth C (1981) Elektrophysiologische Untersuchungen über die Bildung der Impulsmuster in den neuromotorischen Systemen nicht-fibrillärer Flugmuskeln von Schmeißfliegen (Calliphora). Doctoral Dissertation, Universität Düsseldorf, FRGGoogle Scholar
  30. Land MF, Collett TS (1974) Chasing behaviour of houseflies (Fannia canicularis). A description and analysis. J Comp Physiol 89:331–357Google Scholar
  31. Nachtigall W (ed) (1983) BIONA report 1 and 2: Insect flight. Akademie der Wissenschaften Mainz, G. Fischer, Mainz, Stuttgart New YorkGoogle Scholar
  32. Reichardt W (1986) Processing of optical information by the visual system of the fly. Vision Res 26:113–126Google Scholar
  33. Reichardt W (1987) Evaluation of optical motion information by movement detectors. J Comp Physiol A 161:533–547Google Scholar
  34. Reichardt W, Poggio T (1976) Visual control of orientation behaviour in the fly. Part I. A quantitative analysis. Q Rev Biophys 9:311–375Google Scholar
  35. Reichardt W, Poggio T, Hausen K (1983) Figure-ground discrimination by relative movement in the visual system of the fly. Part II: Towards the neural circuitry. Biol Cybern 46 (Suppl):1–30Google Scholar
  36. Spüler M (1980) Erregende und hemmende Wirkungen visueller Bewegungsreize auf das Flugsteuersystem von Fliegen — Elektrophysiologische und verhaltensphysiologische Untersuchungen anMusca undCalliphora. Doctoral Dissertation, Universität Düsseldorf, FRGGoogle Scholar
  37. Spüler M, Heide G (1978) Simultaneous recordings of torque, thrust and muscle spikes from the flyMusca domestica during optomotor responses. Z Naturforsch 33c: 455–457Google Scholar
  38. Wagner H (1986a) Flight performance and visual control of the flight of the free-flying housefly (Musca domestica).II. Pursuit of targets. Phil Trans R Soc Lond B 312:533–579Google Scholar
  39. Wagner H (1986b) Flight performance and visual control of flight of the free-flying housefly (Musca domestica). III. Interactions between angular movement induced by wide- and smallfield stimuli. Phil Trans R Soc Lond B 312:581–595Google Scholar
  40. Wehrhahn C (1985) Visual guidance of flies during flight. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology. Pergamon Press, Oxford New York Toronto Sydney Paris Frankfurt, pp 673–684Google Scholar
  41. Wehrhahn C, Poggio T, Bülthoff H (1982) Tracking and chasing in houseflies (Musca). Biol Cybern 45:123–130Google Scholar
  42. Zanker JM (1987) Über die Flugkrafterzeugung und Flugkraftsteuerung der FruchtfliegeDrosophila melanogaster. Doctoral Dissertation, Universität Tübingen, FRGGoogle Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Martin Egelhaaf
    • 1
  1. 1.Max-Planck-Institut für biologische KybernetikTübingenFederal Republic of Germany

Personalised recommendations