Skip to main content
Log in

A review of the diffusion path concept and its application to the high-temperature oxidation of binary alloys

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Ternary diffusion theory, particularly the concept of diffusion paths on a ternary phase diagram, is reviewed in terms of its application to the problem of binary alloy oxidation. To illustrate this applicability, the oxidation behavior of Fe-Ni, Fe-Cr. and Ni-Cr alloys at 1000°C is examined in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. F. N. Rhines,Trans. AIME 137, 246 (1940).

    Google Scholar 

  2. D. E. Thomas,Trans. AIME 191, 926 (1951).

    Google Scholar 

  3. J. B. Clark and F. N. Rhines,Trans. ASM 51, 199 (1959).

    Google Scholar 

  4. J. S. Kirkaldy and L. C. Brown,Can. Met. Quart. 2, 89 (1963).

    Google Scholar 

  5. J. S. Kirkaldy,Adv. Mat. Research 4, 55 (1970).

    Google Scholar 

  6. J. S. Kirkaldy inOxidation of Metals and Alloys (ASM Monograph, Cleveland, 1971), pp. 101–114.

    Google Scholar 

  7. L. Onsager,Ann. N. Y. Acad. Sci. 46, 241 (1945).

    Google Scholar 

  8. G. J. Hooyman, S. R. De Groot, and P. Masur,Physica 21, 360 (1955).

    Google Scholar 

  9. J. G. Kirkwood, R. L. Baldwin, P. J. Dunlop, L. J. Gosling, and G. Kegeles,J. Chem. Phys. 33, 1505 (1960).

    Google Scholar 

  10. D. G. Miller,Chem. Rev. 60, 15 (1960).

    Google Scholar 

  11. J. E. Lane and J. S. Kirkaldy,Can. J. Phys. 42, 1643 (1964).

    Google Scholar 

  12. J. S. Kirkaldy and G. R. Purdy,Can. J. Phys. 40, 208 (1962).

    Google Scholar 

  13. F. N. Rhines, W. A. Johnson, and W. A. Anderson,Trans. AIME 147, 205 (1942).

    Google Scholar 

  14. C. Wagner,J. Electrochem. Soc. 99, 369 (1952).

    Google Scholar 

  15. C. Wagner,J. Electrochem. Soc. 103, 571 (1956).

    Google Scholar 

  16. C. Wagner,J. Electrochem. Soc. 103, 627 (1956).

    Google Scholar 

  17. C. Wagner,Z. Elektrochem. 63, 772 (1959).

    Google Scholar 

  18. C. Wagner,Corr. Sci. 9, 91 (1969).

    Google Scholar 

  19. D. E. Coates and A. D. Dalvi,Oxidation of Metals 2, 331 (1970).

    Google Scholar 

  20. A. D. Dalvi and D. E. Coates,Oxidation of Metals 3, 203 (1971).

    Google Scholar 

  21. J. W. Rutter and B. Chalmers,Can. J. Phys. 31, 15 (1953).

    Google Scholar 

  22. W. A. Tiller, K. A. Jackson, J. W. Rutter, and B. Chalmers,Acta Met. 1, 428 (1953).

    Google Scholar 

  23. L. S. Darken,Trans. AIME 150, 157 (1942).

    Google Scholar 

  24. C. Wagner,Corrosion Sci. 8, 887 (1968).

    Google Scholar 

  25. M. Kahlweit,Z. Phys. Chem. N.F. 32, 1 (1962).

    Google Scholar 

  26. G. Böhm and M. Kahlweit,Acta Met. 12, 641 (1964).

    Google Scholar 

  27. P. Bolsaitis and M. Kahlweit,Acta Met. 15, 765 (1967).

    Google Scholar 

  28. J. S. Kirkaldy,Can. Met. Quart. 8, 35 (1969).

    Google Scholar 

  29. R. A. Rapp,Corrosion 21, 382 (1965).

    Google Scholar 

  30. C. Wagner,Z. Elektrochem. 63, 958 (1959).

    Google Scholar 

  31. D. E. Coates and J. S. Kirkaldy,Trans. ASM 62, 426 (1969).

    Google Scholar 

  32. W. W. Smeltzer,Trans. Can. Min. Met. Soc. 65, 367 (1962).

    Google Scholar 

  33. J. M. Perrow and W. W. Smeltzer,J. Electrochem. Soc. 109, 1023 (1962).

    Google Scholar 

  34. C. E. Birchenall,Z. Elektrochem. 63, 790 (1959).

    Google Scholar 

  35. A. D. Dalvi and W. W. Smeltzer,J. Electrochem. Soc. 117, 1431 (1970).

    Google Scholar 

  36. G. S. Viktorovich and D. I. Lisovskii,Tsvetnye Metally 7, 49 (1966).

    Google Scholar 

  37. G. S. Viktorovich, V. A. Gutin, and D. I. Lisovskii,Tsvetnye Metally 7, 54 (1966).

    Google Scholar 

  38. J. Moreau.Publ. Jnst. Recherches Siderurgie (A), No. 49 (1953).

  39. D. Lai, R. J. Borg, M. J. Brabers, J. D. Mackenzie, and C. E. Birchenall,Corrosion 17, 357 (1961).

    Google Scholar 

  40. A. U. Seybolt,J. Electrochem. Soc. 107, 147 (1960).

    Google Scholar 

  41. C. T. Fujii and R. A. Meussener,Trans. AIME 242, 1259 (1969).

    Google Scholar 

  42. L. A. Menzies and W. J. Tomlinson.JISI 204, 1239 (1958).

    Google Scholar 

  43. M. J. Brabers and C. E. Birchenall.Corrosion 14, 179t (1958).

    Google Scholar 

  44. L. A. Morris and W. W. Smeltzer.Acta Met. 15, 1591 (1967).

    Google Scholar 

  45. G. L. Wulf, T. J. Carter, and G. R. Wallwork,Corrosion Sci. 9, 689 (1969).

    Google Scholar 

  46. Karl Hauffe,Oxidation of Metals (Plenum Press, New York, 1965), p. 45.

    Google Scholar 

  47. H. J. Yearian, E. G. Randell. and T. A. Longo,Corrosion 12, 515t (1956).

    Google Scholar 

  48. N. Birks and H. Rickert,J. Inst. Met. 91, 308 (1962).

    Google Scholar 

  49. J. E. Croll and G. R. Wallwork,Oxidation of Metals 1, 55 (1969).

    Google Scholar 

  50. J. Moreau and J. Benard.Compt. Rend. 237, 1417 (1953).

    Google Scholar 

  51. C. G. Giggins and F. S. Pettit.Trans. AIME 245, 2495 (1969).

    Google Scholar 

  52. G. C. Wood,Oxid. Metals 2, 11 (1970).

    Google Scholar 

  53. Von Irmtraud Pfeiffer,Z. Metallkde. 51, 322 (1960).

    Google Scholar 

  54. D. L. Douglass,Corrosion Sci. 8, 665 (1968).

    Google Scholar 

  55. G. C. Wood and T. Hodgkiess,J. Electrochem. Soc. 113, 319 (1966).

    Google Scholar 

  56. N. N. Greenwood.Ionic Crystals, Lattice Defects and Nonstoichiometry (Butterworths, London, 1968), Ch. 6.

    Google Scholar 

  57. J. S. Anderson,Proc. Chem. Soc., 166 (1964).

  58. R. F. Goulet, ed.,Nonstoichiometric Compounds, Adv. Chem., Series 39 (American Chemical Society, Washington D.C., 1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dalvi, A.D., Coates, D.E. A review of the diffusion path concept and its application to the high-temperature oxidation of binary alloys. Oxid Met 5, 113–135 (1972). https://doi.org/10.1007/BF00610840

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00610840

Keywords

Navigation