Mechanics of Composite Materials

, Volume 24, Issue 6, pp 804–810 | Cite as

Comparative analysis of two approaches to more accurate calculation of laminate shells made of composite materials

  • É. I. Grigolyuk
  • G. M. Kulikov
  • P. Ya. Nosatenko
Article

Conclusions

  1. 1.

    We worked out an approach based on the theory of multilayered anisotropic shells which makes it possible to investigate the state of stress and strain of structures made of composite materials and taking into account the local effect in the geometrically nonlinear statement.

     
  2. 2.

    We worked out an approach for calculating laminate anisotropic shells of revolution on the basis of the geometrically nonlinear theory of elasticity with numerical realization by the finite element method.

     
  3. 3.

    For the first time all the stress tensors calculated with a view to the geometrically nonlinear deformation of laminate shells of composite materials were compared with each other.

     

Keywords

Finite Element Method Comparative Analysis Composite Material Stress Tensor Local Effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    É. I. Grigolyuk and G. M. Kulikov, “Numerical solution of problems of the statics of geometrically nonlinear anisotropic multilayered shells of revolution,” Mekh. Kompozitn. Mater., No. 3, 443–452 (1981).Google Scholar
  2. 2.
    É. I. Grigolyuk and G. M. Kulikov, “Calculation of radial tires on the basis of Timoshenko's generalized theory,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 4, 166–174 (1984).Google Scholar
  3. 3.
    É. I. Grigolyuk and G. M. Kulikov, “Theory of elastic laminate anisotropic shells,” Dokl. Akad. Nauk SSSR,275, No. 5, 1077–1079 (1984).Google Scholar
  4. 4.
    É. I. Grigolyuk and G. M. Kulikov, “The effect of nonuniformity of the tangential stresses in modern tires,” Mekh. Kompozitn. Mater., No. 5, 870–877 (1986).Google Scholar
  5. 5.
    É. I. Grigolyuk and G. M. Kulikov, “Generalized model of the mechanics of thin-walled structures of composite materials,” Mekh. Kompozitn. Mater., No. 4, 698–704 (1988).Google Scholar
  6. 6.
    P. Ya. Nosatenko, Investigation of the Geometrically Nonlinear State of Stress and Strain of Anisotropic Shells of Revolution by the Finite Element Method [in Russian], Deposited at VINITI March 11, 1984, No. 1526–84 Dep., Moscow (1984).Google Scholar
  7. 7.
    É. I. Grigolyuk and P. Ya. Nosatenko, “The effect of anisotropy in crosswise reinforced shells,” in: Problems of the Mechanics of Deformed Solids [in Russian], Issue 1, Kalinin (1986), pp. 120–129.Google Scholar
  8. 8.
    É. I. Grigolyuk and P. Ya. Nosatenko, “Finite-element solution of the geometrically nonlinear problem of the theory of elasticity,” Izv. Vyssh. Uchebn. Zaved., Mashinostr., No. 6, 3–6 (1987).Google Scholar
  9. 9.
    V. V. Novozhilov, Fundamentals of the Nonlinear Theory of Elasticity [in Russian], Leningrad (1948).Google Scholar
  10. 10.
    A. V. Sachenkov and M. I. Kogan, “Mixed-type variational equations in the theory of elasticity,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 5, 50–57 (1980).Google Scholar
  11. 11.
    A. V. Sachenkov and É. G. Saifullin, “Application of a mixed-type variational equation for reducing a three-dimensional problem of the theory of elasticity to a two-dimensional one,” in: Investigations Concerning the Theory of Plates and Shells, Issue 15, Kazan (1980), pp. 16–25.Google Scholar
  12. 12.
    É. I. Grigolyuk and G. M. Kulikov, “Axisymmetric deformation of anisotropic laminate shells of revolution with complex shape,” Mekh. Kompozitn. Mater., No. 4, 637–645 (1981).Google Scholar
  13. 13.
    É. I. Grigolyuk and P. Ya. Nosatenko, “The simplest variant of nonlinear strain relations in cylindrical coordinates,” Vestn. Mosk. Gos. Univ., Ser. 1, Mat. Mekh., No. 1, 75–78 (1985).Google Scholar
  14. 14.
    É. I. Grigolyuk and P. Ya. Nosatenko, “Numerical substantiation of the existence and singularity of the solution of the geometrically nonlinear problem of the theory of elasticity,” Dokl. Akad. Nauk SSSR,289, No. 4, 821–824 (1986).Google Scholar
  15. 15.
    G. M. Kulikov, The Effect of Anisotropy in Crosswise Reinforced Shells [in Russian], Deposited at VINITI April 7, 1981, No. 1542-81 Dep., Moscow (1981).Google Scholar
  16. 16.
    G. M. Kulikov, “Effect of anisotropy on the state of stress of multilayered reinforced shells,” Prikl. Mekh.,22, No. 12, 66–72 (1986).Google Scholar
  17. 17.
    A. K. Malmeister, V. P. Tamuzh, and G. A. Teters, Resistance of Polymer and Composite Materials [in Russian], Riga (1980).Google Scholar
  18. 18.
    N. J. Pagano, “Influence of shear coupling in cylindrical bending of anisotropic laminates,” J. Composite Mater.,4, No. 3, 330–343 (1970).Google Scholar
  19. 19.
    Ya. M. Grigorenko, A. T. Vasilenko, and N. D. Pankratova, The Statics of Anisotropic Thick-Walled Shells [in Russian], Kiev (1985).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • É. I. Grigolyuk
    • 1
    • 2
  • G. M. Kulikov
    • 1
    • 2
  • P. Ya. Nosatenko
    • 1
    • 2
  1. 1.Moscow Institute of Automobile MechanicsUSSR
  2. 2.Tambov Institute of Chemical Machinery ConstructionUSSR

Personalised recommendations