Journal of Comparative Physiology A

, Volume 154, Issue 6, pp 761–771 | Cite as

Waveguide theory applied to optically measured angular sensitivities of fly photoreceptors

  • J. H. van Hateren


  1. 1.

    Farfield radiation patterns of single ommatidia of the fly,Calliphora erythrocephala, have been photographed. Clear radiation patterns of the first and the second waveguide mode have been observed.

  2. 2.

    According to theory, the shape of the (optical) angular sensitivity of a photoreceptor equals the shape of its farfield radiation pattern, at least for a monomode fiber.

  3. 3.

    The farfield radiation patterns of single photoreceptors have been evaluated quantitatively by means of microdensitometry and have been compared with theoretical calculations according to a lens-waveguide model. Theory and experiment are in good accordance for different wavelengths, different lens apertures, and different photoreceptor diameters.



Radiation Theoretical Calculation Radiation Pattern Good Accordance Waveguide Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barlow HB (1965) Visual resolution and the diffraction limit. Science 149:553–555Google Scholar
  2. Barrell KF, Pask C (1979) Optical fibre excitation by lenses. Opt Acta 26:91–108Google Scholar
  3. Beersma DGM, Hoenders BJ, Huiser AMJ, Toorn P van (1982) Refractive index of the fly rhabdomere. J Opt Soc Am 72:583–588Google Scholar
  4. Born M, Wolf E (1964) Principles of optics. Pergamon Press, New YorkGoogle Scholar
  5. Boschek CB (1971) On the fine structure of the peripheral retina and lamina ganglionaris of the fly,Musca domestica. Z Zellforsch 118:369–409Google Scholar
  6. Eheim WP, Wehner R (1972) Die Sehfelder der zentralen Ommatidien in den Appositionsaugen vonApis mellifica andCataglyphis bicolor (Apidae, Formicidae; Hymenoptera). Kybernetik 10:168–179Google Scholar
  7. Enoch JM (1963) Optical properties of the retinal receptors. J Opt Soc Am 53:71–85Google Scholar
  8. Franceschini N (1975) Sampling of the visual environment by the compound eye of the fly: fundamentals and applications. In: Snyder AW, Menzel R (eds) Photoreceptor optics. Springer, Berlin Heidelberg New York, pp 98–125Google Scholar
  9. Franceschini N, Kirschfeld K (1971) Etude optique in vivo des éléments photorécepteurs dans l'œil composé deDrosophila. Kybernetik 8:1–13Google Scholar
  10. Hardie RC (1979) Electrophysiological analysis of fly retina. I: Comparative properties of R1–6 and R7 and 8. J Comp Physiol 129:19–33Google Scholar
  11. Horridge GA, Mimura K, Hardie RC (1976) Fly photoreceptors. III: Angular sensitivity as a function of wavelength and the limits of resolution. Proc R Soc Lond B 194:151–177Google Scholar
  12. Kirschfeld K, Franceschini N (1968) Optische Eigenschaften der Ommatidien im Komplexauge vonMusca. Kybernetik 5:47–52Google Scholar
  13. Kirschfeld K, Franceschini N (1969) Ein Mechanismus zur Steuerung des Lichtflusses in den Rhabdomeren des Komplexauges vonMusca. Kybernetik 6:13–22Google Scholar
  14. Kuiper JW (1962) The optics of the compound eye. Symp Soc Exp Biol XVI:58–71Google Scholar
  15. Mallock A (1922) Divided composite eyes. Nature 110:770–771Google Scholar
  16. Marcuse D (1974) Theory of dielectric optical waveguides. Academic Press, New YorkGoogle Scholar
  17. Pask C, Barrell KF (1980a) Photoreceptor optics I: Introduction to formalism and excitation in a lens-photoreceptor system. Biol Cybern 36:1–8Google Scholar
  18. Pask C, Barrell KF (1980b) Photoreceptor optics II: Application to angular sensitivity and other properties of a lens-photoreceptor system. Biol Cybern 36:9–18Google Scholar
  19. Pask C, Snyder AW (1975) Angular sensitivity of lensphotoreceptor systems. In: Snyder AW, Menzel R (eds) Photoreceptor optics. Springer, Berlin Heidelberg New York, pp 159–166Google Scholar
  20. Pick B (1977) Specific misalignments of rhabdomere visual axes in the neural superposition eye of dipteran flies. Biol Cybern 26:215–224Google Scholar
  21. Smakman JGJ, Hateren JH van, Stavenga DG (1984) Angular sensitivity of blowfly photoreceptors: intracellular measurements and wave-optical predictions. J Comp Physiol, in pressGoogle Scholar
  22. Smakman JGJ, Pijpker BA (1983) An analog-digital feedback system for measuring photoreceptor properties with an equal response method. J Neurose Meth 8:365–373Google Scholar
  23. Snyder AW (1975) Optical properties of invertebrate photoreceptors. In: Horridge GA (ed) The compound eye and vision of insects. Clarendon Press, Oxford, pp 179–235Google Scholar
  24. Snyder AW (1979) The physics of vision in compound eyes. In: Autrum H (ed) Comparative physiology and evolution of vision in invertebrates. A: Invertebrate photoreceptors. Springer, Berlin Heidelberg New York (Handbook of sensory physiology, vol VII/6A, pp 225–314)Google Scholar
  25. Stavenga DG (1975) The neural superposition eye and its optical demands. J Comp Physiol 102:297–304Google Scholar
  26. Toraldo di Francia G (1948) Retinal cones as dielectric antennae. J Opt Soc Am 38:324Google Scholar
  27. Vogt K (1983) Is the fly visual pigment a rhodopsin? Z Naturforsch 38c:329–333Google Scholar
  28. Vries H de (1956) Physical aspects of the sense organs. Progr Biophys 6:208–264Google Scholar
  29. Wilson M (1975) Angular sensitivity of light and dark adapted locust retinula cells. J Comp Physiol 97:323–328Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • J. H. van Hateren
    • 1
  1. 1.Department of Biophysics, Laboratory for General PhysicsUniversity GroningenThe Netherlands

Personalised recommendations