Skip to main content
Log in

The activation energy for superplastic flow in Al-6Cu-0.4Zr

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A study of the activation energies for superplastic flow in an essentially single phase Al-6Cu-0.4Zr alloy has been made in the temperature range 430 to 490° C. Straight line Arrhenius plots for bothQ σ and\(Q_{\dot \in }\) were obtained in Regions I, II and III. In all cases the ratio\(Q_{\dot \in } /Q_\sigma\) corresponded well to the average strain rate sensitivity as determined by both change rate testing and from the slope of the Inσ versus In\(\dot \in\) curves. Values ofQ σ of 35.2, 19.0 and 20.1 kcal mol−1 were obtained in Regions I, II and III respectively. These values were expected to be close to the true activation energies, and corresponded to the measured lattice and predicted grain boundary diffusion activation energies. These energies, together with microstructural observations made on deformed material, were used to identify possible deformation mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. W. Edington, K. N. Melton andC. P. Cutler,Prog. Mater. Sci. 21 (1976) 61.

    Google Scholar 

  2. K. A. Padmanabhan andG. J. Davies,Phys. Stat.Sol. (a) 18 (1973) 295.

    Google Scholar 

  3. F. A. Mohamed, S. A. Shei andT. G. Langdon,Acta Met. 23 (1975) 1443.

    Google Scholar 

  4. R. H. Bricknell andJ. W. Edington,Met. Trans 7A (1976) 153.

    Google Scholar 

  5. S. A. Shei andT. G. Langdon,Acta Met. 26 (1978) 1153.

    Google Scholar 

  6. F. A. Mohamed andT. G. Langdon,Phys. Stat Sol. (a) 33 (1976) 375.

    Google Scholar 

  7. B. M. Watts, M. J. Stowell, B. L. Baikie andD. G. E. Owen,Metal Sci. 10 (1976) 186.

    Google Scholar 

  8. J. Hedworth andM. J. Stowell,J. Mater. Sci. 6 (1971) 1061.

    Google Scholar 

  9. R. C. Gifkins,Scripta Met. 10 (1976) 433.

    Google Scholar 

  10. J. R. Cahoon,Metal Sci. 9 (1975) 346.

    Google Scholar 

  11. T. S. Lundy andJ. F. Murdock,J. Appl. Phys. 33 (1962) 1671.

    Google Scholar 

  12. R. F. Mehl, F. A. Rhines andK. A. von denSteinen,Metals & Alloys,13 (1941) 41.

    Google Scholar 

  13. A. K. Mukherjee,Mater. Sci. Eng. 8 (1971) 83.

    Google Scholar 

  14. H. Ho andG. C. Weatherly,Acta Met. 23 (1975) 1451.

    Google Scholar 

  15. F. A. Mohamed andT. G. Langdon,Acta Met. 23 (1975) 117.

    Google Scholar 

  16. M. L. Vaidya, K. L. Murty andJ. E. Dorn,ibid. 21 (1973) 1615.

    Google Scholar 

  17. F. A. Mohamed andT. G. Langdon,Phil. Mag. 32 (1975) 697.

    Google Scholar 

  18. R. Raj andM. F. Ashby,Met Trans 2 (1969) 1113.

    Google Scholar 

  19. H. W. Hayden andJ. H. Brophy,Trans. ASM 61 (1968) 542.

    Google Scholar 

  20. R. L. Coble,J. Appl. Phys. 34 (1963) 1679.

    Google Scholar 

  21. M. F. Ashy andR. A. Verrall,Acta Met. 21 (1973) 149.

    Google Scholar 

  22. F. R. N. Nabarro, Report on Conference on Strength of Solids, (Physical Society, 1948, London) p. 75.

    Google Scholar 

  23. C. Herring,J. Appl. Phys. 21 (1950) 437.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bricknell, R.H., Bentley, A.P. The activation energy for superplastic flow in Al-6Cu-0.4Zr. J Mater Sci 14, 2547–2554 (1979). https://doi.org/10.1007/BF00610621

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00610621

Keywords

Navigation