Skip to main content
Log in

A model for mild steel oxidation in CO2

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

A model for the oxidation of mild steel in CO2 is proposed, which is an extension of the ideas of Bruckman, Romanski, and Mrowec. A single layer of magnetite forms initially by short-circuit solid-state transport of cations. Lattice vacancies are injected into the underlying metal and eventually cause loss of scale-metal adhesion in some areas. Microchannels develop in the overlying oxide and the scale continues to grow at both oxide-metal and oxide-gas interfaces. In this duplex stage of growth, inner layer oxide nodules form in the vacancy condensation volume produced by departing metal. Their growth is restricted by a build-up of CO released by the oxidation reaction, so that a microporous structure is perpetuated. Breakaway oxidation is the result of local destruction of CO when a catalyst for the Boudouard reaction eventually forms. The inner layer crystals then grow in an atmosphere of higher oxygen potential, and deposited carbon produces a very porous structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Moore and T. Raine, Steels for Reactor Pressure Circuits, (ISI Special Report No. 69), p. 136 (1961).

  2. J. E. Antill, K. A. Peakall, and J. B. Warburton,Corros. Sci. 8, 689 (1968).

    Google Scholar 

  3. D. Goddison and R. J. Harris,Br. Corros. J. 4, 146 (1969).

    Google Scholar 

  4. P. C. Rowlands, 12th Corrosion Science Symposium, Sheffield, England (1971).

  5. G. B. Gibbs, M. R. Wootton, W. R. Price, and K. E. Hodgson,Oxid. Met. 7(3), 185–200 (1973).

    Google Scholar 

  6. P. Surman and J. E. Castle,Corros. Sci. 9, 711 (1969).

    Google Scholar 

  7. A. Bruckman and J. Romanski,Corros. Sci. 5, 185 (1965).

    Google Scholar 

  8. S. Mrowec and T. Werber,Corros. Sci. 5, 717 (1965).

    Google Scholar 

  9. S. Mrowec,Corros. Sci. 7, 563 (1967).

    Google Scholar 

  10. A. Bruckman, R. Emmerick, and S. Mrowec,Oxid. Met. 5, 137 (1972).

    Google Scholar 

  11. P. Dobson and R. E. Smallman,Proc. Roy. Soc. A 293, 423 (1966).

    Google Scholar 

  12. R. B. Runk and H. J. Kim,Oxid. Met. 2, 285 (1970).

    Google Scholar 

  13. M. T. Curtis, G. B. Gibbs, and M. R. Wootton, Proc. 10th Conf. on Vacuum Micro-balance Techniques, London, England (1972).

  14. D. A. Channing and M. J. Graham,Corros. Sci. 12, 271 (1972).

    Google Scholar 

  15. P. L. Walker, L. G. Austin, and S. P. Nandi,Chemistry and Physics of Carbon P. L. Walker, ed., vol. 2 (1966), p. 257.

  16. J. E. Castle, A. M. Emsley, and P, L. Surman,Nature 231, 86 (1971).

    Google Scholar 

  17. A. Rahmel, 12th Corrosion Science Symposium, Sheffield, England (1971).

  18. M. R. Everett, D. V. Kinsey, and E. Romberg,Chem. Phys. Carbon 3, 289 (1968).

    Google Scholar 

  19. W. R. Price, unpublished work.

  20. M. J. Graham, unpublished work quoted in Ref. 5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gibbs, G.B. A model for mild steel oxidation in CO2 . Oxid Met 7, 173–184 (1973). https://doi.org/10.1007/BF00610578

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00610578

Keywords

Navigation