Mechanics of Composite Materials

, Volume 21, Issue 5, pp 550–555 | Cite as

Evaluation of the deformation properties of spatially reinforced composites

  • A. F. Zilauts
  • A. F. Kregers
  • G. A. Teters
Article
  • 17 Downloads

Keywords

Deformation Property 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    Z. Hashin and S. A. Shtrikman, “A variational approach to the theory of the elastic behavior of multiphase materials,” J. Mech. Phys. Solids,11, 127–136 (1963).Google Scholar
  2. 2.
    W. Voigt, Lehrbuch der Kristallphysik, Berlin, Leipzig (1910).Google Scholar
  3. 3.
    A. Reus, “Berechnung der Fliessgrenze von Mischkristallen auf Grund der Plastizitätsbedingungen für Einkristall,” Z. Angew. Math. Mech.,9, No. 1, 49–58 (1929).Google Scholar
  4. 4.
    I. G. Zhigun and V. A. Polyakov, Properties of Spatially Reinforced Plastics [in Russian], Riga (1978).Google Scholar
  5. 5.
    I. G. Zhigun, V. E. Grushko, and I. A. Matveeva, “Mechanical properties of three-dimensionally reinforced glass-fiber plastics with variable angle of the vertical placing of the reinforcement,” Mekh. Kompozitn. Mater., No. 4, 696–700 (1983).Google Scholar
  6. 6.
    A. F. Kregers and Yu. G. Melbardis, “Determination of the deformability of spatially reinforced composites by the method of averaged rigidities,” Mekh. Polim., No. 1, 3–8 (1978).Google Scholar
  7. 7.
    A. F. Kregers, “Determination of the deformation properties of composite material reinforced by spatially curvilinear reinforcement,” Mekh. Kompozitn. Mater., No. 5, 790–793 (1979).Google Scholar
  8. 8.
    A. K. Malmeister, V. P. Tamuzh, and G. A. Teters, The Resistance of Polymer and Composite Materials [in Russian], 3rd ed., Riga (1980).Google Scholar
  9. 9.
    B. E. Pobedrya, The Mechanics of Composite Materials [in Russian], Moscow (1984)Google Scholar
  10. 10.
    T. D. Shermergor, The Theory of Elasticity of Microinhomogeneous Media [in Russian], Moscow (1977).Google Scholar
  11. 11.
    R. Christensen, Introduction to the Mechanics of Composites [Russian translation], Moscow (1982).Google Scholar
  12. 12.
    Composite Materials. Vol. 2. The Mechanics of Composite Materials [in Russian], Moscow (1978).Google Scholar
  13. 13.
    Z. Hashin, “Analysis of composite materials. A survey,” J. Appl. Mech.,50, 481–505 (1983).Google Scholar
  14. 14.
    A. F. Kregers and G. A. Teters, “Structural model of the deformation of anisotropic, spatially reinforced composites,” Mekh. Kompozitn. Mater., No. 1, 14–22 (1982).Google Scholar
  15. 15.
    T. Nakagawa, H. Koyama, A. Yanagisawa, and K. Suzuki, “Conductive plastics mixed with metal fiber,” in: Progress in Science and Engineering of Composites, Vol. 2, ICCM-IV, Tokyo (1982), pp. 1037–1044.Google Scholar
  16. 16.
    A. F. Kregers, “Deformation of polymer and composite materials under complex loading,” Author's Abstract of Doctoral Thesis, Riga (1983).Google Scholar
  17. 17.
    Yu. G. Melbardis, A. M. Tolks, and V. A. Kantsevich, “Tension and bending of glassfiber plastics with spatial arrangements of reinforcement,” Mekh. Kompozitn. Mater., No. 5, 791–797 (1984).Google Scholar
  18. 18.
    Yu. G. Melbardis, A. M. Tolks, and V. A. Kantsevich, “Some mechanical properties of carbon-fiber plastic on the basis of an all-woven reinforcing carcass,” Mekh. Kompozitn. Mater., No. 6, 986–989 (1984).Google Scholar
  19. 19.
    A. F. Kregers, Yu. G. Melbardis, and É. Z. Plume, “Program for calculating the deformational properties of a hybrid composite reinforced by spatially curvilinear anisotropic reinforcement,” Algoritmy Programmy, No. 1(52), 33 (1983).Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • A. F. Zilauts
    • 1
  • A. F. Kregers
    • 1
  • G. A. Teters
    • 1
  1. 1.Institute of the Mechanics of PolymersAcademy of Sciences of the Latvian SSRRiga

Personalised recommendations