Journal of Applied Electrochemistry

, Volume 12, Issue 4, pp 417–423 | Cite as

Metal deposition in magnetoelectrolysis employing low frequency sine-pulse trains

  • A. Olivier
  • T. Z. Fahidy


The effect of uniform magnetic fields on the electrolytic deposition of copper in electric fields consisting of a d.c. bias voltage and a superimposed rectified sine-pulse train of 1 mHz-0.1 Hz frequency was investigated in an experimental cell. At appropriate combinations of magnetic flux density and potential frequency, good quality deposits can be obtained at elevated cathode current densities. Current oscillations observed under certain conditions are directly related to strong surface deterioration.


Copper Magnetic Field Physical Chemistry Flux Density Magnetic Flux 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. R. Despić and K. I. Popov,J. Appl. Electrochem. 1 (1971) 275.Google Scholar
  2. [2]
    K. I. Popov, D. N. Keča and M. D. Andjelić,J. Appl. Electrochem. 9 (1978) 19.Google Scholar
  3. [3]
    N. Ibl, J. C. Puippe and H. Angerer,Surface Technology 6 (1978) 287.Google Scholar
  4. [4]
    N. Ibl.Metalloberfläche 33 (1979) 51.Google Scholar
  5. [5]
    J. C. Puippe, R. Frey and N. Ibl,Oberfläche-Surface 19 (1978) 298.Google Scholar
  6. [6]
    K. I. Popov, D. N. Keča, S. I. Vidojković, B. J. Lazarević and V. B. Milojković,J. Appl. Electrochem. 6 (1976) 365.Google Scholar
  7. [7]
    K. Viswanathan, H. Y. Cheh and G. L. Standart,J. Appl. Electrochem. 10 (1980) 37.Google Scholar
  8. [8]
    K. Viswanathan and H. Y. Cheh,J. Appl. Electrochem. 9 (1979) 29.Google Scholar
  9. [9]
    M. S. Quraishi, T. Z. Fahidy and M. S. E. Abdo,Electrochim. Acta. in press.Google Scholar
  10. [10]
    M. S. E. Abdo, M. S. Quraishi and T. Z. Fahidy,Proc. 2nd World Congress of Chemical Engineering, Vol. III, Montreal, Canada 4–9 Oct. (1981) Canadian Society for Chemical Engineering, Ottawa, p. 214–6.Google Scholar
  11. [11]
    J. R. Selman and J. Newman,J. Electrochem. Soc. 118 (1971) 1070.Google Scholar
  12. [12]
    L. I. Antropov, ‘Theoretical Electrochemistry’, 2nd edn, Nauka, Moscow (1969).Google Scholar
  13. [13]
    M. A. Gerovich and R. I. Kaganovich,Trud. Chetv. Sovesh. po Elektrokhim. 1–6 Oct. Moscow (1956) (edited by A. N. Frumkinet al.) p. 277.Google Scholar
  14. [14]
    M. A. Gerovich, R. I. Kaganovich, V. A. Vergelesov and L. N. Gorokhov,Dokl. Akad. Nauk SSSR 114 (1957) 1049.Google Scholar
  15. [15]
    J. Koryta, J. Dvořák and V. Bohácková, ‘Electrochemistry’, Methuen, London (1970).Google Scholar
  16. [16]
    A. Damjanovich and A. T. Ward, ‘The Mechanism of Growth of Thin Anodic Oxide Films, Physical Chemistry’, Series Two, Vol. 6, ‘Electrochemistry, International Review of Science’ (edited by A. D. Buckingham and J. O'. M. Bockris) Butterworths, Borough Green (1976).Google Scholar

Copyright information

© Chapman and Hall Ltd. 1982

Authors and Affiliations

  • A. Olivier
    • 1
  • T. Z. Fahidy
    • 1
  1. 1.Department of Chemical EngineeringUniversity of WaterlooWaterlooCanada

Personalised recommendations