Journal of comparative physiology

, Volume 134, Issue 3, pp 241–251 | Cite as

The response properties of auditory neurones in the midbrain of the domestic fowl (Callus gallus) to monaural and binaural stimuli

  • Roger B. Coles
  • Lindsay M. Aitkin


Extracellular recordings were made from auditory units in the midbrain (NMLD) of the domestic fowl. Tonal stimuli delivered monaurally to either ear revealed that contralateral excitation predominated and was coupled with ipsilateral inhibition (EI, 46%), excitation (EE, 21%) or no effect (EO, 17%). Conventional V-shaped tuning curves were readily obtained from contralateral excitatory thresholds, however complex effects were noted such as, inhibitory sidebands and double sensitivity peaks. The distribution of best frequency (BF) thresholds ranged from 60 Hz-5.0 kHz, with the most sensitive region between 1.0–2.0 kHz. Analysis of cell types with BF revealed wide distributions for EI and EE cells, however EO cells had a distinct bias for BF's above 1.0 kHz. Binaural stimuli were used to study unit sensitivity to experimentally produced differences in interaural intensity and time (phase). EI cells generally showed good sensitivity for interaural intensity differences up to 20 dB, across a wide range of BF's. EE cells which demonstrated interaural time sensitivity did so over several milliseconds (maximum physical delay 100 μs). These effects appeared to be related to the period of the stimulus (below 800 Hz) and reflected a tendency for unit responses to be phase-locked. Considering the limits of head size and high frequency sensitivity in the domestic fowl, the present neural data suggests that binaural intensity differences may be the only viable cue during sound localization.


Tuning Curve Good Frequency Domestic Fowl Good Frequency Interaural Intensity Difference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



best frequency


frequency modulated


inferior colliculus


nucleus intercollicularis


interaural intensity difference


interaural time difference


nucleus mesencephalicus lateralis pars dorsalis


nucleus ovoidalis


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aitkin, L.M.: Tonotopic organization at higher levels of the auditory pathway. Int. Rev. Physiol.10, 249–279 (1976)Google Scholar
  2. Aitkin, L.M., Blake, D.W., Fryman, S., Bock, G.R.: Responses of neurones in the rabbit inferior colliculus. II. Influence of binaural tonal stimulation. Brain Res.47, 91–101 (1972)Google Scholar
  3. Aitkin, L.M., Webster, W.R., Veale, J.L., Crosby, D.C.: Inferior colliculus. I. Comparison of response properties of neurons in central, pericentral and external nuclei of adult cat. J. Neurophysiol.38, 1196–1207 (1975)Google Scholar
  4. Biederman-Thorson, M.: Auditory responses of neurones in the lateral mesencephalic nucleus of the barbary dove. J. Physiol.193, 695–705 (1967)Google Scholar
  5. Bock, G.R., Webster, W.R., Aitkin, L.M.: Discharge patterns of single units in inferior colliculus of the alert cat. J. Neurophysiol.35, 265–277 (1972)Google Scholar
  6. Boord, R.L.: Ascending projections of the primary cochlear nuclei and nucleus laminaris in the pigeon. J. Comp. Neurol.133. 523–542 (1968)Google Scholar
  7. Boord, R.L.: The anatomy of the avian auditory system. Ann. N.Y. Acad. Sci.167, 186–198 (1969)Google Scholar
  8. Dohlman, G.F.: Electron microscopic examination of the inner ear of the pigeon. Acta Otolaryngol. (Stockh.)263, 3–7 (1970)Google Scholar
  9. Dooling, R.J., Saunders, J.C.: Hearing in the parakeet (Melopsittacus undulatus): Absolute threshold, critical ratios, frequency difference limens and vocalizations. J. Comp. Physiol. Psychol.88, 1–20 (1975)Google Scholar
  10. Erulkar, S.D.: Comparative aspects of spatial localization of sound. Physiol. Rev.52, 237–360 (1972)Google Scholar
  11. Gates, G.R., Perry, D.R., Coles, R.B.: Cochlear microphonics in the domestic fowl (Gallus domesticus). Comp. Biochem. Physiol.51A, 251–252 (1975)Google Scholar
  12. Goldberg, J.M., Brown, P.B.: Functional organization of the dog superior olivary complex: an anatomical and electrophysiological study. J. Neurophysiol.31, 639–656 (1968)Google Scholar
  13. Guinan, J.J., Guinan, S.S., Norris, B.E.: Single auditory units in the superior olivary complex. I: Responses to sounds and classifications based on physiological properties. Int. J. Neurosci.4, 101–120 (1972)Google Scholar
  14. Hienz, R.D., Sinnott, J.M., Sachs, M.B.: Auditory sensitivity of the red-winged blackbird (Agelaius phoeniceus) and brown-headed cowbird (Molothrus ater). J. Comp. Physiol. Psychol.91, 1365–1376 (1977)Google Scholar
  15. Hind, J.E., Goldberg, J.M., Greenwood, D.D., Rose, J.E.: Some discharge characteristics of single neurons in the inferior colliculus of the cat II. Timing of the discharges and observations on binaural stimulation. J. Neurophysiol.26, 321–341 (1963)Google Scholar
  16. Hotta, T.: Unit responses from the nucleus angularis in the pigeon's medulla. Comp. Biochem. Physiol.40A, 415–424 (1971)Google Scholar
  17. Karten, H.J.: The organization of the ascending auditory pathway in the pigeon. I. Diencephalic projections of the inferior colliculus (Nucleus mesencephalicus lateralis pars dorsalis). Brain Res.6, 409–427 (1967)Google Scholar
  18. Knudsen, E.I., Konishi, M.: A neural map of auditory space in the owl. Science200, 795–797 (1978a)Google Scholar
  19. Knudsen, E.I., Konishi, M.: Space and frequency are represented separately in the auditory midbrain of the owl. J. Neurophysiol.41, 870–884 (1978b)Google Scholar
  20. Knudsen, E.I., Konishi, M., Pettigrew, J.D.: Receptive fields of auditory neurons in the owl. Science198, 1278–1279 (1977)Google Scholar
  21. Konishi, M.: Hearing, single-unit analysis and vocalizations in songbirds. Science166, 1178–1181 (1969)Google Scholar
  22. Konishi, M.: Comparative neurophysiological studies of hearing and vocalizations in songbirds. Z. Vergl. Physiol.66, 257–272 (1970)Google Scholar
  23. Konishi, M.: Locatable and non-locatable acoustic signals for barn owls. Am. Nat.107, 775–785 (1973a)Google Scholar
  24. Konishi, M.: Development of auditory neuronal responses in avian embryos. Proc. Natl. Acad. Sci.70, 1795–1798 (1973b)Google Scholar
  25. Latimer, H.B.: The post-natal growth of the central nervous system of the chicken. J. Comp. Neurol.38, 251–297 (1925)Google Scholar
  26. Leppelsack, H.J.: Funktionelle Eigenschaften der Hörbahn im Feld L des Neostriatum caudale des Staren (Sturnus vulgaris L., Aves). J. Comp. Physiol.88, 271–320 (1974)Google Scholar
  27. Manley, G.A., Leppelsack, H.J.: Preliminary data on activity patterns of cochlear ganglion neurons in the starling. Les Colloqués de INSERM68, 127–136 (1977)Google Scholar
  28. Merzenich, M.M., Reid, M.D.: Representation of the cochlea within the inferior colliculus of the cat. Brain Res.77, 397–415 (1974)Google Scholar
  29. Neff, W.D. (ed.): Sound localization. Fed. Proc.33, 1900–1932 (1974)Google Scholar
  30. Phillips, R.E., Peek, F.W.: Brain organization and neuromuscular control of vocalization in birds. In: Neural and endocrine aspects of behaviour in birds. Wright, P., Caryl, P.G., Vowles, D.M. (eds.), p. 243–274. Amsterdam: Elsevier 1975Google Scholar
  31. Potash, L.M.: Neuroanatomical regions relevant to production and analysis of vocalization within the avain torus semicircularis. Experientia26, 1104–1105 (1970)Google Scholar
  32. Rose, J.E., Gross, N.B., Geisler, C.D., Hind, J.E.: Some neural mechanisms in the inferior colliculus of the cat which may be relevant to localization of a sound source. J. Neurophysiol.29, 288–314 (1966)Google Scholar
  33. Rubel, E. W., Parks, T.N.: Organization and development of brain-stem auditory nuclei of the chicken: Tonotopic organization of nucleus magnocellularis and nucleus laminaris. J. Comp. Neurol.164, 411–434 (1975)Google Scholar
  34. Sachs, M.B., Young, E.D., Lewis, R.H.: Discharge patterns of single fibres in the pigeon auditory nerve. Brain Res.70, 431–447 (1974)Google Scholar
  35. Scheich, H., Langner, G., Koch, R.: Coding of narrow-band and wide-band vocalizations in the auditory midbrain nucleus (MLD) of the Guinea fowl (Numida meleagris). J. Comp. Physiol.117, 245–265 (1977)Google Scholar
  36. Schwartzkopff, J.: Beitrag zum Problem des Richtungshörens bei Vögeln. Z. Vergl. Physiol.32, 319–327 (1950)Google Scholar
  37. Schwartzkopff, J.: Untersuchungen über die Arbeitsweise des Mittelohres und das Richtungshören bei Singvögeln unter Verwendung von Cochlea-Potentialen. Z. Vergl. Physiol.34, 46–68 (1952)Google Scholar
  38. Schwartzkopff, J.: Morphological and physiological properties of the auditory system in birds. Proc. XIII Inter. Ornithol. Congr. 1059–1068 (1963)Google Scholar
  39. Schwartzkopff, J.: Mechanoreception. In: Avian biology. Farner, D.S., King, J.R., Parks, K.C. (eds.), pp. 417–477. New York: Academic Press 1973Google Scholar
  40. Sharp, P.J.: A comparison of variations in plasma luteinizing hormone concentrations in male and female domestic chickens (Gallus domesticus) from hatch to sexual maturity. J. Endocrinol.67, 211–223 (1975)Google Scholar
  41. Tanaka, K., Smith, C.A.: Structure of the avian tectorial membrane. Ann. Otol. Rhinol. Laryngol.84, 287–297 (1975)Google Scholar
  42. Trainer. J.E.: The auditory acuity of certain birds. Ph. D. thesis, Cornell University (1946)Google Scholar
  43. Békésy, von, G.: Experiments in hearing, pp. 500–510. New York: McGraw-Hill 1960Google Scholar
  44. Wallenburg, A.: Die sekundäre Akustikusbahn der Taube. Anat. Anz.14, 353–369 (1898)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Roger B. Coles
    • 1
  • Lindsay M. Aitkin
    • 1
  1. 1.Department of PhysiologyMonash UniversityClaytonAustralia

Personalised recommendations