Mechanics of Composite Materials

, Volume 22, Issue 2, pp 224–228 | Cite as

Optimization of the mass of a layered sphere from a finite set of materials

  • V. V. Alekhin
  • M. A. Kanibolotskii


Layered Sphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    G. D. Babe and E. L. Gusev, “Optimization of multilayer structures in passage of waves,” Dokl. Akad. Nauk SSSR,268. No. 6, 1354–1358 (1983).Google Scholar
  2. 2.
    G. D. Babe, M. A. Kanibolotskii, and Yu. S. Urzhumtsev, “Optimization of multilayer structures subjected to periodic temperature effects,” Dokl. Akad. Nauk SSSR,269, No. 2, 311–314 (1983).Google Scholar
  3. 3.
    Yu. S. Urzhumtsev and M. A. Kanibolotskii, “The synergism effect in the mechanics of multilayer structures,” Mekh. Kompozitn. Mater., No. 2, 289–295 (1984).Google Scholar
  4. 4.
    L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, Mathematical Theory of Optimum Processes [in Russian], Moscow (1976).Google Scholar
  5. 5.
    R. P. Fedorenko, Approximate Solution of Problems of Optimum Control [in Russian], Moscow (1978).Google Scholar
  6. 6.
    M. A. Kanibolotskii, “Optimization of the mass of the spherical shell synthesized from a finite set of materials,” in: Proceedings of the Eighth All-Union Conference on Strength and Plasticity [in Russian], Perm (1983), pp. 78–79.Google Scholar
  7. 7.
    M. A. Kanibolotskii and E. A. Bondarev, “Optimization of the mass of a thick layered sphere,” in: Proceedings of the Second All-Union Conference on Elasticity Theory [in Russian], Tbilisi (1984), pp. 125–126.Google Scholar
  8. 8.
    É. J. Hug and J. S. Arora, Applied Optimal Design [Russian translation], Moscow (1983).Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • V. V. Alekhin
    • 1
    • 2
  • M. A. Kanibolotskii
    • 1
    • 2
  1. 1.A. L. Lavrent'ev Institute of Hydrodynamics, Siberian BranchAcademy of Sciences of the USSRNovosibirsk
  2. 2.Institute of Physical and Technical Problems of the North, Yakutsk BranchSiberian Division of the Academy of Sciences of the USSRYakutsk

Personalised recommendations