Skip to main content

Renewal of visual pigment in photoreceptors of the blowfly

Summary

Spectrophotometric measurements of photoreceptors 1–6 in the blowfly demonstrate that rhodopsin undergoes a continuous renewal. This involves, in the dark, the slow degradation of rhodopsin whereas metarhodopsin is degraded at a much faster rate. The effect of light is to reduce the rate at which metarhodopsin is degraded, i.e. the rate is inversely related to the intensity of the light. Rhodopsin synthesis is dependent on the presence of 11-cis retinal which is formed via a photoreaction from all-trans retinal resulting from the breakdown of rhodopsin and/or metarhodopsin: the biosynthesis of rhodopsin is therefore a light dependent process. Light of the blue/violet spectral range was found to mediate the isomerization of all-trans retinal into the 11-cis form. It is proposed that this stereospecificity is the result of all-trans retinal being bound to a protein. On the basis of the results a visual pigment cycle is proposed.

This is a preview of subscription content, access via your institution.

References

  • Autram H (1981) Light and dark adaptation in invertebrates. In: Autrum H (ed) Comparative physiology and evolution of vision in invertebrates. (Handbook of sensory physiology, vol VII/6C) Springer, Berlin Heidelberg New York, pp 1–91

    Google Scholar 

  • Bernard DG (1983) Dark-processes following photoconversion of butterfly rhodopsins. Biophys Struct Mech 9:277–286

    Google Scholar 

  • Blest AD (1978) The rapid synthesis and destruction of photoreceptor membrane by a dinopid spider: a daily cycle. Proc R Soc London Ser B 200:463–483

    Google Scholar 

  • Blest AD (1980) Photoreceptor membrane turnover in arthropods: comparative studies of breakdown processes and their implications. In: Williams TP, Baker BN (eds) The effect of constant light on visual processes. Plenum, New York London, pp 217–245

    Google Scholar 

  • Boschek BC, Hamdorf K (1976) Rhodopsin particles in the photoreceptor membrane of an insect. Z Naturforsch 31c:763

    Google Scholar 

  • Brown PK, Brown PS (1958) Visual pigments of the octopus and cuttle fish. Nature 182:1288–1290

    Google Scholar 

  • Brown PK, White RH (1972) Rhodopsin of larval mosquito. J Gen Physiol 59:401–414

    Google Scholar 

  • Burnel M, Mahler HR, Moore WJ (1970) Protein synthesis in visual cells ofLimulus. J Neurochem 17:1493–1499

    Google Scholar 

  • Eguchi E (1965) Rhabdom structure and receptor potentials in single crayfish retinular cells. J Cell Comp Physiol 66:411–430

    Google Scholar 

  • Eguchi E, Waterman TH (1966) Fine structure patterns in crustacean rhabdoms. In: Bernhard CG (ed) Functional organization of the compound eye. Wenner Green Internatl Symp Series 7. Pergamon Press, Oxford, pp 105–124

    Google Scholar 

  • Eguchi E, Waterman TH (1967) Changes in retinal fine structure induced in the crabLibinia by light and dark adaptation. Z Zellforsch 79:209–229

    Google Scholar 

  • Goldman LJ, Barnes SN, Goldsmith TH (1975) Microspectrophotometry of rhodopsin and metarhodopsin in the mothGalleria. J Gen Physiol 66:383–404

    Google Scholar 

  • Goldsmith TH (1958) The visual system of the honeybee. Proc Natl Acad Sci USA 44:123–126

    Google Scholar 

  • Goldsmith TH, Bruno M (1973) Behavior of rhodopsin and metarhodopsin in isolated rhabdoms of crabs and lobster. In: Langer H (ed) Biochemistry and physiology of visual pigments. Springer, Berlin Heidelberg New York, pp 147–153

    Google Scholar 

  • Hamdorf K (1979) The physiology of invertebrate visual pigments. In: Autrum H (ed) Invertebrate photoreceptors. (Handbook of sensory physiol, vol VII/6A) Springer, Berlin Heidelberg New York, pp 145–224

    Google Scholar 

  • Hamdorf K, Schwemer J (1975) Photoregeneration and the adaptation process in insect photoreceptors. In: Snyder AW, Menzel R (eds) Photoreceptor optics. Springer, Berlin Heidelberg New York, pp 263–289

    Google Scholar 

  • Hamdorf K, Schwemer J, Gogala M (1971a) Insect visual pigment sensitive to ultraviolet light. Nature 231:458–459

    Google Scholar 

  • Hamdorf K, Gogala M, Schwemer J (1971b) Beschleunigung der Dunkeladaptation eines UV-Rezeptors durch sichtbare Strahlung. Z Vergl Physiol 75:189–199

    Google Scholar 

  • Hamdorf K, Paulsen R, Schwemer J, Täuber U (1972) Photoreconversion of invertebrate visual pigments. In: Wehner R (ed) Information processing in the visual system of arthropods. Springer, Berlin Heidelberg New York, pp 97–108

    Google Scholar 

  • Hamdorf K, Paulsen R, Schwemer J (1973) Photoregeneration and sensitivity control of photoreceptors of invertebrates. In: Langer H (ed) Biochemistry and physiology of visual pigments. Springer, Berlin Heidelberg New York, pp 155–166

    Google Scholar 

  • Hara T, Hara R (1965) New photosensitive pigment found in the retina of the squidOmmastrephes. Nature 206:1331–1334

    Google Scholar 

  • Hara T, Hara R (1972) Cephalopod retinochrome. In: Dartnall HJA (ed) Photochemistry of vision. (Handbook of sensory physiology, vol VII/1) Springer, Berlin Heidelberg New York, pp 720–746

    Google Scholar 

  • Harris WA, Ready DF, Lipson ED, Hudspeth AJ, Stark WS (1977) Vitamin A deprivation andDrosophila photopigments. Nature 266:648–650

    Google Scholar 

  • Hillman P, Hochstein S, Minke B (1983) Transduction in invertebrate photoreceptors: role of pigment bistability. Physiol Rev 63:668–772

    Google Scholar 

  • Hubbard R, St George RCC (1958) The rhodopsin system of the squid. J Gen Physiol 41:501–528

    Google Scholar 

  • Kropf A, Brown PK, Hubbard (1959) Lumi- and meta-rhodopsin of squid and octopus. Nature 183:446–448

    Google Scholar 

  • Paulsen R, Schwemer J (1979) Vitamin A-deficiency reduces the concentration of visual pigment protein within blowfly photoreceptor membranes. Biochim Biophys Acta 557:385–390

    Google Scholar 

  • Paulsen R, Schwemer J (1983) Biogenesis of blowfly photoreceptor membranes is regulated by 11-cis retinal. Eur J Biochem 137:609–614

    Google Scholar 

  • Pepe IM, Schwemer J, Paulsen R (1982) Characteristics of retinal-binding proteins from the honeybee retina. Vision Res 22:775–781

    Google Scholar 

  • Perrelet A (1972) Protein synthesis in the visual cells of the honeybee drone as studied with electron microscope radioautography. J Cell Biol 55:595–605

    Google Scholar 

  • Schwemer J (1969) Der Sehfarbstoff vonEledone moschata und seine Umsetzungen in der lebenden Netzhaut. Z Vergl Physiol 62:121–152

    Google Scholar 

  • Schwemer J (1983) Pathways of visual pigment regeneration in fly photoreceptor cells. Biophys Struct Mech 9:287–298

    Google Scholar 

  • Schwemer J, Gogala M, Hamdorf K (1971) Der UV-Sehfarbstoff der Insekten: Photochemie in vitro und in vivo. Z Vergl Physiol 75:174–188

    Google Scholar 

  • Schwemer J, Henning U (in press) Morphological correlates of visual pigment turnover in fly photoreceptors. Cell Tissue Res

  • Schwemer J, Pepe IM, Paulsen R, Cugnoli C (1984) Lightactivatedtrans-cis isomerization of retinal by a protein from honeybee retina. J Comp Physiol A 154:549–554

    Google Scholar 

  • Seki T, Hara R, Hara T (1980) Reconstitution of squid rhodopsin in rhabdomal membranes. Photochem Photobiol 32:469–479

    Google Scholar 

  • Stavenga DG, Schwemer J (in press) Visual pigments of invertebrates. In: Ali MA (ed) Photoreception and vision in invertebrates. Plenum Press, New York

  • Stavenga DG, Zantema A, Kuiper JW (1973) Rhodopsin processes and the function of the pupil mechanism in flies. In: Langer H (ed) Biochemistry and physiology of visual pigments. Springer, Berlin Heidelberg New York, pp 175–180

    Google Scholar 

  • Stein PJ, Brammer JD, Ostroy SE (1979) Renewal of opsin in the photoreceptor cells of the mosquito. J Gen Physiol 74:565–582

    Google Scholar 

  • Tuurala O, Lehtinen A (1974) Inkorporierung des tritiummarkierten Leucins in die Sehzellen vonOniscus asellus L. (Isopoda, Oniscoidea). Ann Zool Fennici 11:135–140

    Google Scholar 

  • White RH (1964) The effect of light upon the ultrastructure of the mosquito eye. Am Zool 4:433

    Google Scholar 

  • White RH (1967) The effect of light deprivation upon the ultrastructure of larval mosquito ey. II. The rhabdom. J Exp Zool 166:405–425

    Google Scholar 

  • White RH (1968) The effect of light and light deprivation upon the ultrastructure of the larval mosquito eye. III. Multivesicular bodies and protein uptake. J Exp Zool 169:261–278

    Google Scholar 

  • Williams DS (1982) Rhabdom size and photoreceptor membrane turnover in a muscoid fly. Cell Tissue Res 226:629–639

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schwemer, J. Renewal of visual pigment in photoreceptors of the blowfly. J. Comp. Physiol. 154, 535–547 (1984). https://doi.org/10.1007/BF00610167

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00610167

Keywords

  • Spectral Range
  • Fast Rate
  • Spectrophotometric Measurement
  • Visual Pigment
  • Dependent Process