European Journal of Clinical Pharmacology

, Volume 13, Issue 3, pp 185–193 | Cite as

Role of physical factors in the acute changes in renal function elicited by antihypertensive drugs

  • François C. Reubi


An analysis of the correlations between acute changes in blood pressure and renal function elicited by antihypertensive drugs in hypertensive subjects is presented. The drugs used in the study were chlorisondamine, guanethidine, clonidine, phentolamine, hydralazine, a pyrogen and a new hydrazinopyridazine derivative (BQ 22-708). On average mean blood pressure (mBP) decreased by 16%, glomerular filtration rate (GFR) by 11%, urine volume (V) by 8% and sodium clearance (CNa) by 17%. The PAH clearance (CPAH) increased by 3%. Changes in CPAH were not related to changes in mBP. GFR correlated directly with mBP, CPAH and the product mBP × CPAH. The changes in all subgroups in the fractional excretion of water and sodium correlated with the changes in mBP. They correlated further with CPAH in the pyrogen and hydralazine subgroups. There was no consistent relationship between V or CNa and the estimated peritubular capillary oncotic pressure. In 2 subgroups, CNa was not related to plasma aldosterone. The fractional urea excretion was also dependent on blood pressure. The data indicate that, after single doses of antihypertensive agents, changes in renal function largely depend on physical factors. The fall in blood pressure depresses GFR and enhances tubular reabsorption of water, sodium and urea. Renal vasodilation opposes these effects and, if of sufficient magnitude, actually reverses them. There is no evidence for an additional role of humoral or nervous factors.

Key words

Antihypertensive drugs renal hemodynamics sodium clearance urine volume 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Freis, E.D., Rose, J.C., Partenope, E.A., Higgins, T.F., Kelley, R.T., Schnaper, H.W., Johnson, R.L.: The hemodynamic effects of hypotensive drugs in man. III. Hexamethonium. J. clin. Invest.32, 1285–1298 (1953)Google Scholar
  2. 2.
    Notter, B., Wüthrich, F., Schmid, A., Spirig, P., Reubi, F.C.: Hämodynamische und renale Untersuchungen mit einem neuen Ganglienblocker (Ecolid Ciba) am Menschen. Helv. med. Acta23, 509–514 (1956)Google Scholar
  3. 3.
    Novack, P.: The effect of guanethidine on renal, cerebral and cardiac hemodynamics. In: Hypertension, recent advances. (ed. A.N. Brest and J.H. Moyer) p. 444–448. Philadelphia: Lea and Febiger 1961Google Scholar
  4. 4.
    Vorburger, C., Bütikofer, E., Reubi, F.C.: Die akute Wirkung von ST-155 auf die cardiale und renale Hämodynamik. In: Hochdrucktherapie. (ed. L. Heilmeyer) p. 86–94. Stuttgart: G. Thieme 1968Google Scholar
  5. 5.
    Goldring, W., Chasis, H.: Hypertension and hypertensive Disease. New York: The Commonwealth Fund 1944Google Scholar
  6. 6.
    Reubi, F.C.: Renal hyperemia induced in man by a new phthalazine derivative. Proc. Soc. exp. Biol. Med.73, 102–103 (1950)Google Scholar
  7. 7.
    Imhof, P., Keller, H.M., Notter, B., Spirig, P., Paris, J., Reubi, F.C.: Wirkung eines unspezifischen Reizstoffes (Sä 1083) auf Blutdruck, Herzminutenvolumen und Nierenfunktion beim Hypertoniker. Helv. med. Acta23, 515–522 (1956)Google Scholar
  8. 8.
    Dustan, H.P., Cumming, G.R., Corcoran, A.C., Page, I.H.: A mechanism of chlorothiazide-enhanced effectiveness of antihypertensive ganglioplegic drugs. Circulation19, 360–365 (1959)Google Scholar
  9. 9.
    Vorburger, C.: Die akute Wirkung des Diureticums Furosemid auf das Glomerulumfiltrat, die renale Hämodynamik, die Wasser-, NaCl- und K-Ausscheidung und auf den Sauerstoffverbrauch der Nieren. Klin. Wschr.42, 833–839 (1964)Google Scholar
  10. 10.
    Ulrych, M., Frohlich, E.D., Dustan, H.P., Page, I.H.: Immediate hemodynamic effects of β-adrenergic blockade with propranolol in normotensive and hypertensive man. Circulation37, 411–416, 1968Google Scholar
  11. 11.
    Hodler, J., Akert, R., Hunkeler, H., Weidmann, P.: Changes in renal function in essential hypertension induced by phentolamine before and after administration of oxprenolol. In A phentolamine workshop. (ed. C.A.S. Wink). London: Geigy Scientific Publication 1977Google Scholar
  12. 12.
    Vorburger, C., Riedwyl, H., Reubi, F.C.: Vergleichende Studien zwischen den renalen Clearances von51Cr-EDTA, Inulin und Natriumthiosulfat beim Menschen. Klin. Wschr.47, 415–420 (1969)Google Scholar
  13. 13.
    Sealey, J.E., Gerten-Banes, J., Laragh, J.H.: The renin system. Variations in man measured by radioimmuno-assay or bioassay. Kidney Int.1, 240–253 (1972)Google Scholar
  14. 14.
    Vetter, W., Vetter, H., Siegenthaler, W.: Radioimmunoassay for aldosterone without chromatography. II. Determination of plasma aldosterone. Acta endocrinol.74, 558–567 (1973)Google Scholar
  15. 15.
    Landis, E.M., Pappenheimer, J.R.: Exchange of substances through the capillary walls. In: Handbook of physiology. (ed. W.F. Hamilton). Section 2. Circulation2, 961–1034. Washington: Am. Physiol. Soc. 1963Google Scholar
  16. 16.
    Smith, H.W.: The kidney. Structure and function in health and disease. New York: Oxford University Press 1951Google Scholar
  17. 17.
    Brenner, B.M., Troy, J.L., Daugharty, T.M., Deen, W.M., Robertson, C.R.: Dynamics of glomerular ultrafiltration in the rat. II. Plasma-flow dependence of GFR. Am. J. Physiol.223, 1184–1190 (1972)Google Scholar
  18. 18.
    Robertson, C.R., Deen, W.M., Troy, J.L., Brenner, B.M.: Dynamics of glomerular ultrafiltration in the rat. III. Hemodynamics and autoregulation. Am. J. Physiol.223, 1191–1200 (1972)Google Scholar
  19. 19.
    Onesti, G., Brest, A.N., Novack, P., Kasparian, H., Moyer, J.H.: Pharmacodynamic effects of β-methyldopa in hypertensive subjects. Am. Heart J.67, 32–38 (1964)Google Scholar
  20. 20.
    Andreucci, V.E., Dal Canton, A., Corradi, A., Stanziale, R., Migone, L.: Role of the efferent arteriole in glomerular hemodynamics of superficial nephrons. Kidney Int.9, 475–480 (1976)Google Scholar
  21. 21.
    Earley, L.E., Friedler, R.M.: Effects of combined renal vasodilation and pressor agents on renal hemodynamics and tubular reabsorption of sodium. J. clin. Invest.45, 542–551 (1966)Google Scholar
  22. 22.
    Lewy, J.E., Windhager, E.E.: Peritubular control of proximal tubular fluid reabsorption in the rat kidney. Am. J. Physiol.214, 943–954 (1968)Google Scholar
  23. 23.
    Stumpe, K.O., Lowitz, H.D., Ochwadt, B.: Fluid reabsorption in Henle's loop and urinary excretion of sodium and water in normal rats and rats with chronic hypertension. J. clin. Invest.49, 1200–1212 (1970)Google Scholar
  24. 24.
    Boulpaep, L.L.: Permeability changes of the proximal tubule of necturus during saline loading. Am. J. Physiol.222, 517–531 (1972)Google Scholar
  25. 25.
    Brenner, B., Troy, J.L.: Postglomerular vascular protein concentration: evidence for a causal role in governing fluid reabsorption and glomerulotubular balance by the renal proximal tubule. J. clin. Invest.50, 336–349 (1971)Google Scholar
  26. 26.
    Vander, A.J.: Effect of acetylcholine, atropine and physostigmine on renal function in the dog. Am. J. Physiol.206, 492–498 (1964)Google Scholar
  27. 27.
    Stein, J.H., Reineck, J.H., Osgood, R.W., Ferris, T.F.: Effect of acetylcholine on proximal tubular sodium reabsorption in the dog. Am. J. Physiol.220, 227–232 (1971)Google Scholar
  28. 28.
    Stein, J.H., Ferris, T.F., Huprich, J.E., Smith, T.C., Osgood, R.W.: Effect of renal vasodilation on the distribution of cortical blood flow in the kidney of the dog. J. clin. Invest.50, 1429–1438 (1971)Google Scholar
  29. 29.
    Martinez-Monaldo, M., Tsapares, N., Eknoyan, G., Suki, W.N.: Renal action of prostaglandins. Am. J. Physiol.222, 1147–1152 (1972)Google Scholar
  30. 30.
    Buckalew, V.M., Puschett, J.B., Kintzel, J.E., Goldberg, M.: Mechanism of exaggerated natriuresis in hypertensive man: impaired sodium transport in the loop of Henle. J. clin. Invest.48, 1007–1016 (1969)Google Scholar
  31. 31.
    Reubi, F.C., Vorburger, C., Keller, H.M.: The renal extraction of PAH in anaemic subjects before and after a red cell transfusion. Clin. Sci.23, 213–219 (1962)Google Scholar
  32. 32.
    Bello-Reuss, E., Trevino, D.L., Gottschalk, C.W.: Effect of renal sympathetic nerve stimulation on proximal water and sodium reabsorption. J. clin. Invest.57, 1104–1107 (1976)Google Scholar
  33. 33.
    Huvos, A., Yagi, S., Mannick, J.A., Hollander, W.: Stimulation of renin secretion by hydralazine. Studies in renovascular hypertension. Circulation32, 118 (1965)Google Scholar
  34. 34.
    Hökfelt, B., Hedeland, H., Dymling, J.F.: Studies on catecholamines, renin and aldosterone following Catapresan® in hypertensive patients. Europ. J. Pharmacol.10, 389–397 (1970)Google Scholar
  35. 35.
    Bühler, F.R., Laragh, J.H., Baer, L., Vaughan, E.D., Brunner, H.R.: Propranolol inhibition of renin secretion. New Engl. J. Med.287, 1209–1214 (1972)Google Scholar
  36. 36.
    Weidmann, P., Hirsch, D., Maxwell, M.H., Okun, R., Schroth, P.: Plasma renin and blood pressure during treatment with β-methyldopa. Am. J. Cardiol.34, 671–676 (1974)Google Scholar
  37. 37.
    Reubi, F.C., Vorburger, C., Bütikofer, E.: A comparison of the short-term and long-term haemodynamic effects of antihypertensive drug therapy. In Catapres in hypertension. (ed. M.E. Conolly) p. 113–125. London: Butterworths 1970Google Scholar

Copyright information

© Springer-verlag 1978

Authors and Affiliations

  • François C. Reubi
    • 1
  1. 1.Medical PolyclinicUniversity of BerneBerneSwitzerland

Personalised recommendations