Oxidation of Metals

, Volume 8, Issue 5, pp 265–281 | Cite as

The formation of two-phase layered scales on pure metals

  • Gregory J. Yurek
  • John P. Hirth
  • Robert A. Rapp


The thicknesses of the layers of a two-phase layered scale depend upon the individual stabilities, rates of growth, and molar volumes of the two compound products at a particular temperature. These factors and the partitioning of cations between the two compounds at their common interface are considered in order to develop a quantitative theory for the growth of double-layered scales on pure metals. Although layer thicknesses have been previously measured for several double-layered scales, all of the data necessary to calculate the relative thicknesses according to the present theory are not available. Thus, the theory cannot be verified at this time. However, the relative thicknesses of FeO and Fe3O4 which should form on Fe for 800⩽T⩽1090°C with\(P_{ O_{_2 } } = 10^{ - 11} atm\) are calculated. For two-phase layered scale formation in the oxidation of Co, other calculated values are discussed in terms of experimental results of other investigators.


Oxidation Physical Chemistry Fe3O4 Layer Thickness Molar Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Fishbeck and F. Salzer,Metallwirtsch. 14, 733, 753 (1935).Google Scholar
  2. 2.
    W. Jost,Diffusion und chemische Reaktion in festen Stoffe (Steinkopff, Leipzig and Dresden, 1937), p. 166.Google Scholar
  3. 3.
    C. Wagner, “Reaktionen mit Metallen,” inHandbuch der Metallphysik, Vol. I, 2 (Leipzig, 1940), p. 143.Google Scholar
  4. 4.
    G. Valensi,Pittsburgh International Conference on Surface Reactions (Corrosion Publ. Co., Pittsburgh, 1948, p. 156.Google Scholar
  5. 5.
    K. Hauffe and W. Schottky,Halbleiterprobleme, Vol. V (Braunschweig, 1960), pp. 258–267.Google Scholar
  6. 6.
    G. V. Kidson,J. Nucl. Mater. 3, 21 (1961).Google Scholar
  7. 7.
    C. Wagner,Acta Met. 17, 99 (1969).Google Scholar
  8. 8.
    H. Schmalzried,Reactivity of Solids, G.-M. Schwab, ed. (Elsevier, Amsterdam, 1965), p. 204.Google Scholar
  9. 9.
    H.-G. Sockel,J. Cryst. Growth 12, 106 (1972).Google Scholar
  10. 10.
    C. Wagner,Z. Phys. Chem. B21, 25 (1933).Google Scholar
  11. 11.
    C. Wagner,Atom Movements (American Society for Metals, Cleveland, 1951), p. 153.Google Scholar
  12. 12.
    P. Vallet and P. Raccah,Mem. Sci. Rev. Met. 62, 1 (1965).Google Scholar
  13. 13.
    L. Himmel, R. F. Mehl, and C. E. Birchenall,Trans. AIME 197, 827 (1953).Google Scholar
  14. 14.
    P. Hembree and J. B. Wagner, Jr.,Trans. TMS-AIME 245, 1547 (1969).Google Scholar
  15. 15.
    C. E. Birchenall, “The Growth of Highly Defective Scales,” inHeterogeneous Kinetics at Elevated Temperatures, C. R. Belton and W. L. Worrell, eds. (Plenum Press, New York, 1970), pp. 253–267.Google Scholar
  16. 16.
    S. M. Klotsman, A. N. Timofeyev, and I. Sh. Trakhtenberg,Phys. Met. Metallog. 10, 93 (1961).Google Scholar
  17. 17.
    V. I. Izvekov,Akad. Nauk. Belarus SSR 1, 64 (1958).Google Scholar
  18. 18.
    H. Schmalzried,Z. Phys. Chem.,31, 184 (1962).Google Scholar
  19. 19.
    Handbook of Chemistry and Physics, R. C. Weast, ed. (Chemical Rubber Co., Cleveland, 1970–1971).Google Scholar
  20. 20.
    R. A. Rapp and D. A. Shores, “Solid Electrolyte Galvanic Cells,” inTechniques of Metals Research, Vol. IV, R. A. Rapp, ed. (Wiley, New York, 1970), p. 159.Google Scholar
  21. 21.
    R. Hales, A. C. Hill, and R. K. Wild,Corrosion Sci. 13, 325 (1973).Google Scholar
  22. 22.
    G. Simkovich and S. Kertoamodjo,Scripta Met. 7, 573 (1973).Google Scholar
  23. 23.
    A. G. Goursat and W. W. Smeltzer,Oxid. Met. 6, 101 (1973).Google Scholar
  24. 24.
    J. Paidassi,Rev. Met. LIV, 569 (1957).Google Scholar
  25. 25.
    J. Paidassi, M. G. Vallee, and P. Pepin,Mem. Sci. Rev. Met. 62, 789 (1965).Google Scholar
  26. 26.
    F. Morin and M. Rigaud,Can. Met. Quart. 9, 521 (1970).Google Scholar

Copyright information

© Plenum Publishing Corporation 1974

Authors and Affiliations

  • Gregory J. Yurek
    • 1
  • John P. Hirth
    • 2
  • Robert A. Rapp
    • 2
  1. 1.Institut fur theoretische Hüttenkunde und angewandte physikalische Chemie der Technischen Universität ClausthalClausthal-ZellerfeldWest Germany
  2. 2.Department of Metallurgical EngineeringThe Ohio State UniversityColumbus

Personalised recommendations