Advertisement

Journal of comparative physiology

, Volume 141, Issue 3, pp 311–317 | Cite as

Response of the cercus-to-giant interneuron system in crickets to species-specific song

  • G. Kämper
  • M. Dambach
Article

Summary

In addition to their high frequency stridulatory sound, crickets (Gryllus campestris) also produce low frequency airborne vibrations resulting from the strokes of the crickets' wings closing and opening during stridulation. Giant interneurons of the ventral cord, which receive inputs from cereal hairs, respond to these low frequencly components of cricket song up to a distance of some ten cm. The discharges are correlated to the time course of the acoustic stimulation, therefore allowing the transmission of the time patterns (syllables, chirps) of calling song, rivalry song and even courtship song. With simultaneous recording from both sides of the abdominal nerve cord, synchronous or alternating discharges can be detected, correlated either with syllables or intervals. The response mode depends on the position of the two individuals in relation to each other. Recording directly from singing males demonstrates interneuron response to selfgenerated signals, too. A possible communicative function of the system is discussed.

Keywords

Response Mode Nerve Cord Communicative Function Simultaneous Recording Time Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bentley DR, Kutsch W (1966) The neuromuscular mechanism of stridulation in crickets (Orthoptera: Gryllidae). J Exp Biol 45:151–164Google Scholar
  2. Bischof HJ (1974) Verteilung und Bewegungsweise der keulenförmigen Sensillen vonGryllus bimaculatus DEG. Biol Zentralbl 93:449–457Google Scholar
  3. Bischof HJ (1975) Die keulenförmigen Sensillen auf den Cerci der GrilleGryllus bimaculatus als Schwererezeptoren. J Comp Physiol 98:277–288Google Scholar
  4. Camhi JM, Tom W, Volman S (1978) The escape behaviour of the cockroachPeriplaneta americana. II Detection of natural predators by air displacement. J Comp Physiol 128:203–212Google Scholar
  5. Counter SA (1976) An electrophysiological study of sound sensitive neurons in the ‘primitive ear’ ofAcheta domesticus. J Insect Physiol 22:1–8Google Scholar
  6. Dagan D, Camhi JM (1979) Responses to wind recorded from the cereal nerve of the cockroachPeriplaneta americana. II Directional selectivity of the sensory neurons innervating single columns of filiform hairs. J Comp Physiol 133:103–110Google Scholar
  7. Dambach M, Lichtenstein L (1978) Zur Ethologie der afrikanischen GrillePhaeophilacris spectrum Saussure. Z Tierpsychol 46:14–29Google Scholar
  8. Dumpert K, Gnatzy W (1977) Cricket combined mechanoreceptors and kicking response. J Comp Physiol 122:9–25Google Scholar
  9. Edwards JS, Palka J (1974) The cerci and abdominal giant fibres of the house cricket,Acheta domesticus. I Anatomy and physiology of normal adults. Proc R Soc London Ser B 185:83–103Google Scholar
  10. Fraser PJ (1977) Cereal ablation modifies tethered flight behaviour of cockroach. Nature 268:523–524Google Scholar
  11. Hartmann HB, Walthall WW, Bennett LP, Stewart RR (1979) Giant interneurons mediating equilibrium reception in an insect. Science 205:503–505Google Scholar
  12. Huber F (1965) Brain controlled behaviour in orthopterans. In: Treherne JE, Beament JWL (eds) The physiology of the insect central nervous system. Academic Press, London New York, pp 233–246Google Scholar
  13. Kämper G, Dambach M (1979) Communication by infrasound in a non-stridulating cricket. Naturwissenschaften 66:530Google Scholar
  14. Katsuki Y, Suga N (1960) Neural mechanism of hearing in insects. J Exp Biol 37:279–290Google Scholar
  15. Knjazev AN, Popov AV (1977) Reaction of single cereal mechanoreceptors of a cricket to sound and sinusoidal mechanical stimulation. Rep Acad Sci USSR 232 (5): 1211–1214Google Scholar
  16. Kutsch W (1969) Neuromuskuläre Aktivität bei verschiedenen Verhaltensweisen von drei Grillenarten. Z Vergl Physiol 63:335–378Google Scholar
  17. Levine RB, Murphey RK (1980) Pre- and postsynaptic inhibition of identified giant interneurons in the cricket (Acheta domesticus). J Comp Physiol 135:269–282Google Scholar
  18. Mendenhall B, Murphey RK (1974) The morphology of cricket giant interneurons. J Neurobiol 5:565–580Google Scholar
  19. Murphey RK, Palka J (1974) Efferent control of cricket giant fibres. Nature 248:249–251Google Scholar
  20. Murphey RK, Palka J, Hustert R (1977) The cercus-to-giant interneuron system of crickets. II Response characteristics of two giant interneurons. J Comp Physiol 119:285–300Google Scholar
  21. Nicklaus R (1969) Zur Funktion der keulenförmigen Sensillen auf den Cerci der Grillen. Verh Dtsch Zool Ges Innsbruck, Zool Anz Suppl 32:393–398Google Scholar
  22. Orida N, Josephson RK (1978) Peripheral control of responsiveness to auditory stimuli in giant fibres of crickets and cockroaches. J Exp Biol 72:153–164Google Scholar
  23. Petrovskaya ED, Rozhkova GI, Tokareva VS (1970) Characteristics of single receptors of the cereal auditory system of the house cricket. Biofizika 15:1112–1119Google Scholar
  24. Pumphrey RJ, Rawdon-Smith AF (1936) Hearing in insects: The nature of the response of certain receptors to auditory stimuli. Proc R Soc London Ser B 121:18–27Google Scholar
  25. Schwab WE, Josephson RK (1977) Coding of acoustic information in cockroach giant fibres. J Insect Physiol 23:665–670Google Scholar
  26. Tautz J (1977) Reception of medium vibration by thoracal hairs of caterpillars ofBarathra brassicae L. (Lepidoptera, Noctuidae). I Mechanical properties of the receptor hairs. J Comp Physiol 118:13–31Google Scholar
  27. Tautz J (1979) Reception of particle oscillation in a medium — an unorthodox sensory capacity. Naturwissenschaften 66:452–461Google Scholar
  28. Tautz J, Markl H (1978) Caterpillars detect flying wasps by hairs sensitive to airborne vibration. Behav Ecol Sociobiol 4:101–110Google Scholar
  29. Tobias M, Murphey RK (1979) The response of cereal receptors and identified interneurons in the cricket (Acheta domesticus) to airstreams. J Comp Physiol 129:51–59Google Scholar
  30. Westin J (1979) Response to wind recorded from the cercal nerve of the cockroachPeriplaneta americana. I Response properties of single neurons. J Comp Physiol 133:97–102Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • G. Kämper
    • 1
  • M. Dambach
    • 1
  1. 1.Lehrstuhl TierphysiologieZoologisches Institut der UniversitätKöln 41Federal Republic of Germany

Personalised recommendations